Abstract
In this work we will study the use of satellite-measured irradiances as well as clear sky radiance estimates as features for the nowcasting of photovoltaic energy productions over Peninsular Spain. We will work with three Machine Learning models (Lasso and linear and Gaussian Support Vector Regression-SVR) plus a simple persistence model. We consider prediction horizons of up to three hours, for which Gaussian SVR is the clear winner, with a quite good performance and whose errors increase slowly with time. Possible ways to further improve these results are also proposed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alaíz, C.M., Dorronsoro, J.R.: The generalized group lasso. In: International Joint Conference on Neural Networks, IJCNN 2015, Killarney, Ireland, 12–17 July 2015, pp. 1–8 (2015)
Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez de Pison, F.J., Antonanzas-Torres, F.: Review of photovoltaic power forecasting. Sol. Energy 136, 78–111 (2016)
Catalina, A., Torres-Barrán, A., Dorronsoro, J.R.: Machine learning prediction of photovoltaic energy from satellite sources. In: Woon, W.L., Aung, Z., Kramer, O., Madnick, S. (eds.) DARE 2016. LNCS, vol. 10097, pp. 31–42. Springer, Cham (2017). doi:10.1007/978-3-319-50947-1_4
Claesen, M., Simm, J., Popovic, D., Moreau, Y., De Moor, B.: Easy hyperparameter search using Optunity (2014). arXiv preprint arXiv:1412.1114
Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a library for large linear classifcation. J. Mach. Learn. Res. 9(August), 1871–1874 (2008)
Hammer, A., Heinemann, D., Hoyer, C., Kuhlemann, R., Lorenz, E., Müller, R., Beyer, H.G.: Solar energy assessment using remote sensing technologies. Remote Sens. Environ. 86(3), 423–432 (2003)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009)
Ineichen, P., Perez, R.: A new airmass independent formulation for the linke turbidity coefficient. Sol. Energy 73(3), 151–157 (2002)
Inman, R.H., Pedro, H., Coimbra, C.: Solar forecasting methods for renewable energy integration. Prog. Energy Combust. Sci. 39(6), 533–576 (2013)
Kühnert, J., Lorenz, E., Heinemann, D.: Satellite-based irradiance and power forecasting for the German energy market. In: Kleissl, J. (ed.) Solar Energy Forecasting and Resource Assessment, pp. 267–297. Academic Press, Cambridge (2013)
Mohammed, A.A., Yaqub, W., Aung, Z.: Probabilistic forecasting of solar power: an ensemble learning approach. In: Neves-Silva, R., Jain, L.C., Howlett, R.J. (eds.) Intelligent Decision Technologies. SIST, vol. 39, pp. 449–458. Springer, Cham (2015). doi:10.1007/978-3-319-19857-6_38
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Photovoltaic Performance Modeling Collaborative Group: The PVLIB-Python Library. Sandia National Laboratory
Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)
Tjemkes, S., Stuhlmann, R., Hewison, T., Müller, J., Gartner, V., Rota, S.: The conversion from effective radiances to equivalent brightness temperatures. Technical report, EUMETSAT 10 (2012)
Wan, C., Zhao, J., Song, Y., Zhao, X., Lin, J., Zechun, H.: Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst. 1, 38–46 (2015)
Wolff, B., Kühnert, J., Lorenz, E., Kramer, O., Heinemann, D.: Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data. Sol. Energy 135, 197–208 (2016)
Acknowledgments
With partial support from Spain’s grants TIN2013-42351-P, TIN2016-76406-P, TIN2015-70308-REDT and S2013/ICE-2845 CASI-CAM-CM. Work supported also by project FACIL–Ayudas Fundación BBVA a Equipos de Investigación Científica 2016, and the UAM–ADIC Chair for Data Science and Machine Learning. The second author is also supported by the FPU–MEC grant AP-2012-5163. We thank Red Eléctrica de España for useful discussions and making available PV energy data and gratefully acknowledge the use of the facilities of Centro de Computación Científica (CCC) at UAM.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Catalina, A., Torres-Barrán, A., Dorronsoro, J.R. (2017). Satellite Based Nowcasting of PV Energy over Peninsular Spain. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_59
Download citation
DOI: https://doi.org/10.1007/978-3-319-59153-7_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59152-0
Online ISBN: 978-3-319-59153-7
eBook Packages: Computer ScienceComputer Science (R0)