Abstract
In this paper, a method for automatic selection and classification of the sleeper cracks is presented. This method includes three main sequential steps of image pre-processing, sleeper detection and crack detection. Two approaches including rule-based method and template matching method in the frequency domain are proposed for the sleeper detection step. We utilize adaptive threshold binarization to handle challenging crack detection under non-uniform lightening condition and hierarchical structure for the decision making step. Two unsupervised classifiers are exploited to detect the cracks. The results show that the presented method has the overall detection rate with accuracy of at least 87 percent.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm. Accessed 04 Oct 2016
Bernsen, J.: Dynamic thresholding of gray-level images. In: Proceedings of the 8th International Conference on Pattern Recognition, pp. 1251–1255 (1986)
Fujita, Y., Mitani, Y., Hamamoto, Y.: A method for crack detection on a concrete structure. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR 2006), vol. 3, pp. 901–904 (2006)
Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Pattern Recogn. 39(3), 317–327 (2006). http://www.sciencedirect.com/science/article/pii/S0031320305003821
Goshtasby, A., Gage, S.H., Bartholic, J.F.: A two-stage cross correlation approach to template matching. IEEE Trans. Pattern Anal. Mach. Intell. 6(3), 374–378 (1984)
Khan, M.H., Helsper, J., Yang, C., Grzegorzek, M.: An automatic vision-based monitoring system for accurate Vojta-Therapy. In: Proceedings of the 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), pp. 1–6. IEEE (2016)
Khan, M.H., Shirahama, K., Farid, M.S., Grzegorzek, M.: Multiple human detection in depth images. In: International Workshop on Multimedia Signal Processing (MMSP). IEEE (2016)
Le, T.H.N., Bui, T.D., Suen, C.Y.: Ternary entropy-based binarization of degraded document images using morphological operators. In: 2011 International Conference on Document Analysis and Recognition, pp. 114–118, September 2011
Lu, S., Su, B., Tan, C.L.: Document image binarization using background estimation and stroke edges. Int. J. Doc. Anal. Recogn. (IJDAR) 13(4), 303–314 (2010). http://dx.doi.org/10.1007/s10032-010-0130-8
Lyon, D.: The discrete fourier transform, part 6: cross-correlation. J. Object Technol. 9(2), 17–22 (2010)
Mohammad, S.P.: Machine vision for automating visual inspection of wooden railway sleepers. Master’s thesis, Department of Computer Science, Dalarna University (2008)
Niblack, W.: An Introduction to Digital Image Processing. Strandberg Publishing Company, Birkeroed (1985). pp. 115–116
Oh, H.H., Lim, K., Chien, S.I.: An improved binarization algorithm based on a water flow model for document image with inhomogeneous backgrounds. Pattern Recogn. 38(12), 2612–2625 (2005). http://www.sciencedirect.com/science/article/pii/S0031320305001317
Oliveira, H., Correia, P.L.: Automatic road crack detection and characterization. IEEE Trans. Intell. Transp. Syst. 14(1), 155–168 (2013)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). http://dx.doi.org/10.1109/TSMC.1979.4310076
Prasanna, P., Dana, K.J., Gucunski, N., Basily, B.B., La, H.M., Lim, R.S., Parvardeh, H.: Automated crack detection on concrete bridges. IEEE Trans. Autom. Sci. Eng. 13(2), 591–599 (2016)
Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000). http://www.sciencedirect.com/science/article/pii/S0031320399000552
Su, B., Lu, S., Tan, C.L.: Binarization of historical document images using the local maximum and minimum. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, DAS 2010, NY, USA, pp. 159–166 (2010). http://doi.acm.org/10.1145/1815330.1815351
Yamaguchi, T., Nakamura, S., Hashimoto, S.: An efficient crack detection method using percolation-based image processing. In: 2008 3rd IEEE Conference on Industrial Electronics and Applications, pp. 1875–1880, June 2008
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Delforouzi, A., Tabatabaei, A.H., Khan, M.H., Grzegorzek, M. (2018). A Vision-Based Method for Automatic Crack Detection in Railway Sleepers. In: Kurzynski, M., Wozniak, M., Burduk, R. (eds) Proceedings of the 10th International Conference on Computer Recognition Systems CORES 2017. CORES 2017. Advances in Intelligent Systems and Computing, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-319-59162-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-59162-9_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59161-2
Online ISBN: 978-3-319-59162-9
eBook Packages: EngineeringEngineering (R0)