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Abstract. Recommendation systems have been widely used by com-
mercial service providers for giving suggestions to users. Collaborative
filtering (CF) systems, one of the most popular recommendation sys-
tems, utilize the history of behaviors of the aggregate user-base to pro-
vide individual recommendations and are effective when almost all users
faithfully express their opinions. However, they are vulnerable to mali-
cious users biasing their inputs in order to change the overall ratings of
a specific group of items. CF systems largely fall into two categories -
neighborhood-based and (matrix) factorization-based - and the presence
of adversarial input can influence recommendations in both categories,
leading to instabilities in estimation and prediction. Although the robust-
ness of different collaborative filtering algorithms has been extensively
studied, designing an efficient system that is immune to manipulation
remains a significant challenge. In this work we propose a novel hy-
brid recommendation system with an adaptive graph-based user/item
similarity-regularization - Chiron. Chiron ties the performance benefits
of dimensionality reduction (through factorization) with the advantage
of neighborhood clustering (through regularization). We demonstrate,
using extensive comparative experiments, that Chiron is resistant to ma-
nipulation by large and lethal attacks.

1 Introduction

Users of commercial service providers such as Netflix, Spotify, and Amazon are
provided with a large selection of recommended choices while using these online
services. Recommendation systems aid users in the challenging task of finding
the best video, music, book, or product out of all the possible options that

ar
X

iv
:1

60
4.

03
75

7v
2 

 [
cs

.I
R

] 
 1

5 
N

ov
 2

01
6

saber@ccs.neu.edu
mohammad-sajjad.ghaemi@polymtl.ca
koods@ccs.neu.edu
Hazarisoufiani18@gsb.columbia.edu


2

they can have while using these systems. In this regard, collaborative filtering-
based recommendation systems play an increasing role in helping people locate
their favorite items in an immense dataset. In addition to providing helpful
recommendations to users, these systems are also beneficial for the companies
in raising their sales. However, since a good recommendation usually results in
increased sales, some might find it profitable to shill recommendation systems
by providing false information.

“Collaborative filtering (CF)” algorithms predict how much a user prefers a
set of items, and produce a ranked list of items that would benefit or match her
interests the most. In recommendation systems based on collaborative filtering,
users rate specific items and receive recommendations for unrated ones. All of
these different systems are vulnerable to malicious attackers intending to ma-
nipulate the recommendations to suit their needs. Such attackers are known as
“shills” and those attacks have been referred to as “shilling” or “Sybil” attacks
[23].

Collaborative filtering methods do not use any information about users or
items except for a partially observed rating matrix. The latter contains informa-
tion provided by different users regarding different items, and the entries of this
matrix are usually either binary or ordinal. Two of the most popular methods
for predicting the missing values are neighborhood based methods: item based
CF and user based CF, and matrix factorization: singular value decomposition
(SVD) [22], Enhanced SVD [9], non-negative matrix factorization (NMF) [13],
[12], probabilistic matrix factorization (PMF) [25], and Bayesian probabilistic
matrix factorization (BPMF) [24]. There are hybrid recommendation systems
that combine both methods.

In this work, we introduce Chiron5, a robust recommendation system. We
conduct extensive experimental studies to compare the robustness of our algo-
rithm with current state-of-the-art methods. Our experimental results indicate
that Chiron is the most robust recommendation system, and the presence of
an attack does not affect its performance. While many collaborative filtering
methods are prone to overfitting, we prevent over-fitting by introducing a smart
regularization technique which takes users’ and items’ similarities into account
in the context of local graph estimation of the marginal probability of users and
items.

1.1 Related Work

Many psychological studies have shown that people tend to agree with opinions
of others regardless of their factual correctness. Cosley et al. [8] showed that
prediction manipulation in a recommendation system can affect people in that
system and, in some cases, mislead people into accepting a negative and unfitting
recommendation. Therefore, people’s perceived value of items are influenced by

5 Chiron was the most important Centaur in Greek mythology, and centaurs are hybrid
creatures. Since our model is a hybrid-recommendation system that factorizes the
user/item matrix and uses the neighborhood information, we picked this name.
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the ratings of a recommendation system. Chirita et al. [7] demonstrated that
the presence of only three attackers in the neighborhood of one user is enough
to create a significant change in prediction and move an unpopular item to the
top five recommended items.

Lam et al. [11] and O’Mahony et al. [21] showed that many of the well-
known recommendation systems are vulnerable to attacks and proposed different
methods to distinguish honest raters from attackers.

However, using detection algorithms as a preprocessing step can be com-
putationally expensive. Therefore, others have proposed building robust recom-
mendation systems [18,19]. While recommendation systems have been widely
investigated, less attention has been devoted to studying their vulnerability to
manipulations. Mehta et al. [17] discussed a robust recommendation system’s
characteristics. In [27], they investigated how different statistical models use
locality in order to enforce robustness.

O’Mahony et al. [20] performed empirical studies on the robustness of user-
user kNN algorithms. They showed that attackers can successfully manipulate
recommendation systems both by pushing and nuking attacks. Push attacks
happen when malicious users try to increase ratings of specific items, and nuke
attacks happen when they do the opposite.

Seminario et al. [26] examined the trade-offs between accuracy and robustness
of user-based and item-based CF recommendation systems and showed that the
former achieve relatively positive marks on both properties. However, in an item-
based CF recommendation system there exists a trade-off between its accuracy
and robustness.

In this work, we propose a new generative model for recommendation systems
that not only considers the users’ evaluations of items, but also takes into account
the items’ evaluations of users. In some cases, items could be informative, and
have their own evaluations of users. This extra information could be used to
add priors to the system in order to promote users who give honest ratings.
We incorporate these evaluations as regularization terms inspired by the local
similarities underlying the graph structure.

2 Contribution

We propose a new model subject to certain constraints which considers the
quality of a rater (e.g. customers providing feedback), as well as the quality
of an item (e.g. a restaurant or a product). Then we apply the neighborhood
information using a graph regularizer to approximate a geometrical structure of
the distribution of users and items in the latent space.

Fitting an arbitrary model to the observed data is usually prone to over-
fitting by increasing the variance of the error term. In order to prevent a model
from over-fitting, researchers deploy several techniques, including cross valida-
tion and regularization. Regularization deals with a trade-off between bias and
variance of an estimator. It has to ensure a model is complex enough to encom-
pass the observed data smoothly, simultaneously, keeping the model as simple as
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possible in order to generalize the unobserved data. We have two regularization
terms in our model (4). One controlling the user similarity in the intrinsic space
of their underlying rated items . The other tunes the items rating measured by
the geometry of the users’ distribution.

The intuition behind this model is simple yet efficient. Whether someone
likes an item or not depends on the affinity between her latent preferences and
the item’s latent attributes (demonstrated by θ in our model), and the influence
of her friends on her choices and her decision regarding similar items in the past.
We add the extra information regarding a person and an item local neighborhood
to this model by adding regularization to the log likelihood of our model. Our
research is inspired by the work of Belkin et al. [3], Zheng et al. [29], and Cai et
al.[6].

We construct our model by first computing a graph from the observed ratings
and creating an affinity matrix by measuring the similarities between ratings of
different users. Then we incorporate a regularization term into the model which
is sufficiently smooth with respect to the intrinsic structure collectively revealed
by both observed and missing data. Our model has two basic assumptions:

1. Local assumption: nearby users are likely to have the same rating.
2. Global assumption: users on the same structure (considered as an underlying

manifold) are more likely to have the same rating.

The relationship between users can be thought of as an undirected weighted
graph, in which the weights reflect the affinity between the ratings of those users.
Our regularization propagates the rating’s value through the edges attached to
it. The value transferred to each user is proportional to its weight (similar to the
graph construction in [30]).

Exploiting the inherent geometry of the marginal distribution could be trou-
blesome if we do not have the true density function[3]. Therefore researchers
use transductive learning via spectral graph-Laplacian, which incorporates users
and their ratings by extracting the underlying geometric structure to approxi-
mate the data-dependent regularizer for this model [30]. This is a well studied
approach that utilizes both labeled and unlabeled data to improve classification
accuracy. [10].

We demonstrate how this approach is robust to attacks by malicious users.
Additionally, we examine our model’s performance on three real-world datasets,
and compare the success rate of attacks on our system as well as the state-of-the-
art collaborative filtering recommendation systems. We also compare the running
time of different methods on a different dataset and conclude that Chiron is not
only robust to attacks, but is also the second fastest algorithm among the varied
collection of current recommendation systems.

3 Model

Suppose we have m raters who rate n items with a score in the range of 1 to
K. Let Pi = (pi1, .., piK) be the vector of probabilities of different ratings for
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item i, and Qj = (qj1, .., qjK) be the vector of probabilities of different ratings
by rater j. From now on we use index j to refer to a user, and index i to refer
to an item in our model. Let rij = k if user j gives rating of k to item i and
let zijk denote the corresponding indicator variable, i.e. zijk = 1 if rij = k, and
zijk = 0 otherwise. Now in Chiron, the probability that an item i receives rating
k by user j is calculated as follows:

Pr(rij = k) ≈ θijk =
pikqjk∑K
l=1 pilqjl

(1)
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Fig. 1: Examples of different combinations of probabilities of ratings given by
user j (as Qj) and her ratings for an item i (as Pi), and the corresponding

probability that item i is rated as k by user j as Pr(rij = k).

Different combinations of Pi, Qj , and corresponding Pr(rij = k) for three
cases are illustrated in Figure 1. For example in the first case, we have a user
j who gives a high rating to most items (e.g. rates items only when she loves
them). For an item i which receives a poor rating by most users and other ratings
with the same probability, Chiron predicts that user j gives either the lowest or
the highest rating to that item with a high probability.

In the second case, user j rates items as 1 to 5 with an ascending probability,
and item i is rated with a descending probability. In this case, Chiron predicts
that this user would rate this item as 1,2,4, or 5 with the same probability and
rates it as 3 with a lower probability.

In the last case, user j tends to rate items as either very good or very bad. On
the other hand, we have an item i which is mostly rated as average (3). Chiron
predicts that user j gives any rating to item j with the same probability.

θ captures users’ rating habits. The log likelihood function of (1) is:
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L(P,Q;Z) =
∑
ijk

zijk log
pikqjk∑
l pilqjl

(2)

=
∑
ijk

zijk log pikqjk −
∑
ij

log
∑
l

pilqjl (3)

4 Estimation

The model defined in 3 is our fitting constraint, which means an appropriate
estimating function should not change too much from the initial observed val-
ues. Now we add the smoothness constraints, which imply that a reasonable
estimating function should not change too much between nearby users and cor-
responding ratings. The trade-off between these two competing constraints is
captured by a positive parameter λ1, and its counterpart 1− λ1 to make a con-
vex combination of two regularization terms. This way, one can increase the
influence of users so that the effect of items will decrease. We set the value of
hyper-parameters λ1 using cross-validation.

L′(P,Q;Z) =

n∑
i=1

m∑
j=1

K∑
k=1

(
zijk log

pikqjk∑
l pilqjl

+ λ1qjk(dQjjqjk −
m∑
t=1

qtkw
Q
tj)

+(1− λ1)pik(dPiipik −
n∑

t=1

ptkw
P
ti)

)
(4)

In formula 4 wQ and wP represent the graph underlying the data for users
and items respectively. We represent those graphs with GQ = (V Q, EQ), and
GP = (V P , EP ). In GQ and GP users or items with similar ratings are connected
to each other. To construct the weight matrix wQ (we use similar method for
computing wP ), we find 10 nearest users for each user in Q using Pearson corre-
lation (to construct EQ). Then we apply the following kernel for each connected
pair (j1, j2):

wQ
j1j2

=

n∑
i=1

K∑
k=1

zij1kzij2k

wQ
j1j2

measures how many times both users j1 and j2 give the same rating to the
same item.

We use a regularization term that keeps the model flexible enough to assign
different probabilities to qj1k, and qj2k for distant users j1, and j2 in order to keep
them away from each other. This difference is proportional to the small weight
in terms of rating similarity that connects them weakly. The regularization term
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wQ
j1j2

(qj1k−qj2k)2 best captures this property, which means it pushes the (qj1k−
qj2k) toward zero for strong similarity between (j1, j2) pair with similar rating.

Using local assumption that nearby users have similar ratings, the discrete
k = 10-nn graph estimates the global manifold for the underlying users. The ob-
served ratings can propagate through this estimated graph to impute the missing
values. Consequently, in order to spread the information among users, Laplacian
of the constructed graph plays the central role in predicting the missing data
from the observed values. Laplacian denoted by LQ = DQ −WQ, is considered
in this study where DQ is a diagonal matrix whose entries are dQjj =

∑
t w

Q
jt.

LQ is a symmetric and positive semi-definite matrix. This representation allows
the information of ratings propagates smoothly between users with probability
that is proportional to the weight between them. For the sake of calculating the
stochastic element-wise gradient, we expand the wQ

j1j2

∑K
k=1(qj1k − qj2k)2 term

within the likelihood cost function as the sum element-wise notation expressed
in equation 4.

The model defined in 3 minimizes the variance term for the true estimator θ.
The class of unconstrained models are usually prone to overfitting. At the same
time simple models suffer from underfitting due to increase in bias. We suggest
a smart regularization method based on locality preservation to compromise
both issues. Hence, we consider a specific assumption regarding the connection
between the marginal and the conditional distributions of P and Q. Let us
assume that if two items p1, p2 ∈ P share close ratings in the form of intrinsic
geometry of Pr(P ), then this implies the conditional distributions Pr(Q|p1) and
Pr(Q|p2) are correspondingly alike. In other words, the conditional probability
distribution Pr(Q|pi) varies smoothly along the geodesics in the true geometrical
shape of Pr(P ). Therefore, we have two regularization terms, one controls user
similarities in the intrinsic space of their underlying rated items. The other tunes
rating of items using the geometry of users distribution.

In order to compute the maximum likelihood of our model, we take the partial
derivative of equation (4) with respect to P and Q :

∂L(P,Q;Z)

∂qj∗k∗
=
∑
i

zij∗k∗
pik∗

qj∗k∗
−
∑
ij

pik∗∑
l pilqjl

+ λ1(dQj∗j∗qj∗k∗ −
m∑
t=1

qtk∗wQ
tj∗)

(5)

∂L(P,Q;Z)

∂pi∗k∗
=
∑
j

zi∗jk∗
qjk∗

pi∗k∗
−
∑
ij

qjk∗∑
l pilqjl

+ (1− λ1)(dPi∗i∗pi∗k∗ −
n∑

t=1

ptk∗wP
ti∗)

(6)

And then we set them to zero which leads to the following equations:



8

qj∗k∗ =

∑
i zij∗k∗pik∗∑

i
pik∗∑
l pilqj∗l

zij∗k∗ − λ1(dQj∗j∗qj∗k∗ −
∑m

t=1 qtk∗wQ
tj∗)

(7)

pi∗k∗ =

∑
j zi∗jk∗qjk∗∑

j
qjk∗∑
l pi∗lqjl

zi∗jk∗ − (1− λ1)(dPi∗i∗pi∗k∗ −
∑n

t=1 ptk∗wP
ti∗)

(8)

Since we would like to optimize both pik and qjk, our model is bi-convex that
is prone to get trapped in one of the local optimums. One possible solution is
to fix one of the unknown parameters, and solve the optimization problem for
the other. We use the average alternating projections method [2] with different
initial values to provide a set of estimators. For this purpose we first fix pik and
solve the optimization problem for qjk, and then fix qjk and solve the problem
for pik, and continue until convergence. We assume the model converges when
the following holds for Q (and a similar term for P):

1

m

∑
1≤j≤m

∑
k

(qjk − qj∗k∗)2 < ε (9)

In (9) ε is a small number (10−3 in our case). In the two real-world data sets
that we examined, Chiron converges in at most 5 steps.

5 Experimental Setting

We examined the robustness, and accuracy of Chiron in rating prediction and
compared it with state-of-the-art recommendation systems.

In subsection 5.1 we introduce the datasets we are using in our experiments.
Then in 5.2 we introduce various attack strategies, and evaluation methods for
comparing shilling attacks. After that we explain why we chose a specific kind
of attack for our experiments. Finally in 5.3, we introduce the different recom-
mendation systems, and the toolkit we are using to compare them.

5.1 Datasets

We used the MoveLens100K, and Netflix3m1k databases for our experiments.
The first data set is gathered by GroupLens Research Project [1] at the Univer-
sity of Minnesota. The last one is provided by Netflix in the Netflix prize [4]. Prea
software [15] gathered all these data sets in its toolkit. In each dataset each user
rated at least 20 movies from 1 (defined as did not like) to 5 (liked very much).
We performed a cross-validation by splitting each of dataset into a training set
(80%), a validation set (10%), and a test set (10%), and compared the predicted
ratings with actual ratings of the test set. We repeated our experiments 10 times
and used the averaged results.
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5.2 Attack Design

In this paper, we are only concerned with shilling attacks in which attackers try
to manipulate a recommendation system by introducing fake users, and subse-
quently fake ratings. We only focus on push attacks since they are usually more
successful than nuke attacks [11]. The effect of an attack is measured by the
deviation in predicted ratings before and after adding the attack profiles. The
most common metric for evaluating recommendation systems is Mean Absolute
Error(MAE) which is used to measure accuracy in predicting ratings.

Two important metrics that are used for evaluation of different shilling at-
tacks are the attack size and the filler size [17].The attack size is the ratio of
added shilling profiles to the original data set. For example, a 10% attack size
indicates that the number of shilling profiles added to the system is equal to 10%
of the users in the original data set. Another metric that is used for evaluation of
different shilling attacks is the filler size. The filler size is the set of items which
are voted for in the attacker profile.

We target a set of 20 items for the push attack. We repeat each experiment
10 times, and consider the mean value across these 10 times for each item in
order to make sure our results are statistically significant.

The most effective attack models are derived by reverse engineering the rec-
ommendation algorithms to maximize their impact. As Burke et al. [5] men-
tioned, the most common recommendation systems attack methods are random,
average, and bandwagon. In a random attack, the assigned ratings made by
attackers are around the overall mean rating with standard deviation 1.1. In
average attacks, the assigned ratings made by attackers are around the mean
rating of every item and standard deviation 1.1. Bandwagon attack is similar to
the random attack, and some popular items are rated with the maximum rate.

Random and Bandwagon attacks do not require much knowledge about the
set of items they are attacking. They only need information about some popular
items and their overall means. Creating random ratings within a certain average
interval will allow the attacker to have a high impact in making decisions for
other users. On the other hand, average attacks require more information and
are shown to be near optimal in impact [16]. They are also very challenging to
detect [28], and are stronger than random or bandwagon attacks [17]. Therefore,
in this work we are only concerned with the average attacks.

5.3 Experiments

We use Prea [14] to compare our proposed model with different recommendation
systems. The different algorithms we select to compare with Chiron fall into these
two categories: memory-based neighborhood methods, and matrix factorization
methods.

Memory-based neighborhood methods use the knowledge about similar users
or items to give predictions about the unrated items. Memory based methods
that we use in this experiment for comparison are: User-based Collaborative Fil-
tering, User-based Collaborative Filtering (Default Voting), Item-based Collab-
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Data set
Method Netflix3M1K MovieLens100k

MAE
Before After Growth Before After Growth

user-based CF 0.772 0.985 27% 0.734 0.924 25%

user-based DF 0.765 0.979 27% 0.735 0.922 25%

item-based CF 0.756 0.970 28% 0.722 0.923 27%

item-based DF 0.760 0.979 28% 0.718 0.923 28%

Slope One 0.775 1.045 34% 0.744 0.985 32%

Regular SVD 0.819 1.528 86% 0.729 0.982 34%

Non negative MF 0.868 1.745 101% 0.780 1.043 33%

Probabilistic MF 0.786 1.280 62% 0.775 0.984 26%

Bayesian PMF 0.793 1.319 66% 0.745 0.977 31%

Chiron 0.775 0.943 21% 0.737 0.908 23%

Table 1: Changes in prediction accuracy after an attack size of 100% in the
Netflix3M1K, and MovieLens100k data sets. The statistically significant result

is shown in bold in each column.

orative Filtering, Item-based Collaborative Filtering (Inverse User Frequency),
and Slope One.

On the other hand, matrix factorization methods build low-rank user or item
profiles by factorizing training datasets with linear algebraic methods.The matrix
factorization methods that we use in this experiment are: Regularized SVD,
Non-negative Matrix Factorization (NMF), Probabilistic Matrix Factorization
(PMF), and Bayesian Probabilistic Matrix Factorization (BPMF).

6 Results and discussion

The results of running different recommendation systems on the Netflix3M1K,
and MovieLens100K, are shown in Table 1. We compared the prediction accuracy
growth among different collaborative system methods after an attack size 100%
on the first two data sets. A 100% attack is a shill, in which the number of fake
users is equal to the number of genuine users. The mission of attackers is to
promote a certain list of items (20 items in our experiment) and give an average
rating to another set of random items to remain undetected. As expected, Chiron
is the most robust recommendation system and has the least amount of change
in accuracy.

In another similar experiment, we attacked both the Netflix3M1K and Movie-
Lens100K data sets with a 10% attack and gradually increased the attack size
until it reached 100%. We increase the size till 100% to demonstrate how dif-
ferent models react to the increase in attack size. We pick 100% because most
models could be distinguished from each other at that point. The changes in
prediction accuracy are illustrated in Figure 2a and 2b. In both of them the
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Fig. 2: Changes in prediction accuracy in two different data sets.

performance of Chiron almost remains unchanged with increases in the attack
size while the prediction accuracy of other methods drops.

7 Conclusion

Various methods exist for protecting recommendation systems against attacks by
malicious users. More research has been done in the detection of attackers rather
than proposing a robust recommendation system. Besides, the level of spam in
real world data is often high, and simple spam detection methods are often
reverse engineered. In this paper, we proposed a new model which is empirically
robust to attacks, explored its characteristics, and provided compelling evidence
of its robustness. Chiron can not easily be manipulated since it relies on modeling
and other users ratings. Furthermore, we have illustrated its improved robustness
in comparison with other state-of-the-art methods, and concluded that Chiron
does not lose accuracy in the presence of shill attacks.
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