Abstract
We study a general stochastic ranking problem where an algorithm needs to adaptively select a sequence of elements so as to “cover” a random scenario (drawn from a known distribution) at minimum expected cost. The coverage of each scenario is captured by an individual submodular function, where the scenario is said to be covered when its function value goes above some threshold. We obtain a logarithmic factor approximation algorithm for this adaptive ranking problem, which is the best possible (unless \(P=NP\)). This problem unifies and generalizes many previously studied problems with applications in search ranking and active learning. The approximation ratio of our algorithm either matches or improves the best result known in each of these special cases. Moreover, our algorithm is simple to state and implement. We also present preliminary experimental results on a real data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adler, M., Heeringa, B.: Approximating optimal binary decision trees. Algorithmica 62(3–4), 1112–1121 (2012)
Azar, Y., Gamzu, I.: Ranking with submodular valuations. In: SODA, pp. 1070–1079 (2011)
Azar, Y., Gamzu, I., Yin, X.: Multiple intents re-ranking. In: STOC, pp. 669–678 (2009)
Bansal, N., Gupta, A., Krishnaswamy, R.: A constant factor approximation algorithm for generalized min-sum set cover. In: SODA, pp. 1539–1545 (2010)
Bansal, N., Gupta, A., Li, J., Mestre, J., Nagarajan, V., Rudra, A.: When LP is the cure for your matching woes: improved bounds for stochastic matchings. Algorithmica 63(4), 733–762 (2012)
Bellala, G., Bhavnani, S.K., Scott, C.: Group-based active query selection for rapid diagnosis in time-critical situations. IEEE Trans. Inf. Theor. 58(1), 459–478 (2012)
Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, W.R., Raghavan, P., Sudan, M.: The minimum latency problem. In: STOC, pp. 163–171 (1994)
Chakaravarthy, V.T., Pandit, V., Roy, S., Awasthi, P., Mohania, M.K.: Decision trees for entity identification: approximation algorithms and hardness results. ACM Trans. Algorithms 7(2), 15 (2011)
Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency tours. In: FOCS, pp. 36–45 (2003)
Cicalese, F., Laber, E.S., Saettler, A.M.: Diagnosis determination: decision trees optimizing simultaneously worst and expected testing cost. In: ICML, pp. 414–422 (2014)
Dasgupta, S.: Analysis of a greedy active learning strategy. In: NIPS (2004)
Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack problem: the benefit of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)
Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)
Golovin, D., Krause, A.: Adaptive submodularity: theory and applications in active learning and stochastic optimization. J. Artif. Intell. Res. 42, 427–486 (2011)
Golovin, D., Krause, A., Ray, D.: Near-optimal Bayesian active learning with noisy observations. In: NIPS, pp. 766–774 (2010)
Grammel, N., Hellerstein, L., Kletenik, D., Lin, P.: Scenario submodular cover. CoRR abs/1603.03158 (2016). (to appear in WAOA 2016)
Guillory, A., Bilmes, J.: Average-case active learning with costs. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 141–155. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04414-4_15
Gupta, A., Nagarajan, V., Ravi, R.: Approximation algorithms for optimal decision trees and adaptive TSP problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 690–701. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14165-2_58
Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2015)
Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is \(NP\)-complete. Inf. Process. Lett. 5(1), 15–17 (1976/1977)
Im, S., Nagarajan, V., Zwaan, R.: Minimum latency submodular cover. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 485–497. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31594-7_41
Im, S., Sviridenko, M., van der Zwaan, R.: Preemptive and non-preemptive generalized min sum set cover. Math. Program. 145(1–2), 377–401 (2014)
Javdani, S., Chen, Y., Karbasi, A., Krause, A., Bagnell, D., Srinivasa, S.S.: Near optimal bayesian active learning for decision making. In: AISTATS, pp. 430–438 (2014)
Kosaraju, S.R., Przytycka, T.M., Borgstrom, R.: On an optimal split tree problem. In: Dehne, F., Sack, J.-R., Gupta, A., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 157–168. Springer, Heidelberg (1999). doi:10.1007/3-540-48447-7_17
Navidi, F., Kambadur, P., Nagarajan, V.: Adaptive submodular ranking. arXiv preprint arXiv:1606.01530 (2016)
Skutella, M., Williamson, D.P.: A note on the generalized min-sum set cover problem. Oper. Res. Lett. 39(6), 433–436 (2011)
Wolsey, L.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)
Acknowledgements
Part of V. Nagarajan’s work was done while visiting the Simons institute for theoretical computer science (UC Berkeley). The authors thank Lisa Hellerstein for a clarification on [16] regarding the OR construction of submodular functions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kambadur, P., Nagarajan, V., Navidi, F. (2017). Adaptive Submodular Ranking. In: Eisenbrand, F., Koenemann, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2017. Lecture Notes in Computer Science(), vol 10328. Springer, Cham. https://doi.org/10.1007/978-3-319-59250-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-59250-3_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59249-7
Online ISBN: 978-3-319-59250-3
eBook Packages: Computer ScienceComputer Science (R0)