Abstract
We analyze in this paper the impact of introducing fuzzy T-conorm operators in the area of belief merging. There are mainly two subclasses of merging operators: the utilitarian and the egalitarian ones. We prove that a T-conorm merging operator can be included in the subtype of egalitarian operators. We also study how the different T-conorm operators behave with respect to their logical properties and how this affects their rationality.
This research is supported by CNPq and CAPES.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alcantud, J.: Liberal approaches to ranking infinite utility streams: When can we avoid interferences? Mpra paper, University Library of Munich, Germany (2011). http://EconPapers.repec.org/RePEc:pra:mprapa:32198
Alcantud, J.C.R.: Non-interference and continuity: impossibility results for the evaluation of infinite utility streams. Technical report, p. 13 (2011)
Butnariu, D., Klement, E.P.: Triangular norm-based measures and games with fuzzy coalitions, vol. 10. Springer Science & Business Media, New York (1993)
Cappelen, A.W., Tungodden, B.: A liberal egalitarian paradox. Econ. Philos. 22, 393–408 (2006)
Dalal, M.: Investigations into a theory of knowledge base revision. In: Proceedings of the Seventh American National Conference on Artificial Intelligence (AAAI88). pp. 475–479 (1988)
Dalton, H.: The measurement of the inequality of incomes. Econ. J. 30, 348–361 (1920)
Detyniecki, M., Yager, R.R., Bouchon-Meunier, B.: Reducing t-norms and augmenting t-conorms. Int. J. Gen. Syst. 31(3), 265–276 (2002)
Everaere, P., Konieczny, S., Marquis, P.: On egalitarian belief merging. In: AAAI (2014)
Hammond, P.J.: Equity, arrow’s conditions, and rawls’ difference principle. Econ.: J. Econom. Soc. 793–804 (1976)
Klement, E.P., Mesiar, R.: Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms. Elsevier Science B.V., Amsterdam (2005)
Klement, E.P., Mesiar, R., Pap, E.: On the order of triangular norms: comments on “a triangular norm hierarchy” by e. cretu. Fuzzy Sets Syst. 131(3), 409–413 (2002)
Klement, E.P., Pap, E., Mesiar, R.: Triangular Norms. Trends in logic, Kluwer Academic Publ. cop., Dordrecht (2000). http://opac.inria.fr/record=b1104736
Konieczny, S., Lang, J., Marquis, P.: DA\(^2\) merging operators. Artif. Intell. 157(1–2), 49–79 (2004)
Konieczny, S., Pino-Pérez, R.: Merging with integrity constraints. In: Fifth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 1999). pp. 233–244 (1999)
Konieczny, S., Pino-Pérez, R.: Merging information under constraints: a logical framework. J. Log. Comput. 12(5), 773–808 (2002)
Lin, J., Mendelzon, A.O.: Merging databases under constraints. Int. J. Coop. Inf. Syst. 7, 55–76 (1996)
Lombardi, M., Miyagishima, K., Veneziani, R.: Liberal Egalitarianism and the Harm Principle. Mpra Paper. University Library of Munich, Germany (2013)
Mariotti, M., Veneziani, R.: ‘Non-interference’ implies equality. Soc. Choice Welf. 32(1) (2008). http://dx.doi.org/10.1007/s00355-008-0316-x
Moulin, H.: Axioms of Cooperative Decision Making, Econometric Society monographs, vol. 15. Cambridge University Press, Cambridge (1988)
Revesz, P.Z.: On the semantics of theory change: arbitration between old and new information. In: Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. pp. 71–82. ACM (1993)
Savage, L.: The Foundations of Statistics. Wiley, New York (1954)
Schweizer, B., Sklar, A.: Associative functions and statistical triangle inequalities. Publ. Math. Debrecen. 8, 169–186 (1961)
Sen, A.K.: Choice, Welfare and Measurement. Harvard University Press, Cambridge (1997)
Tungodden, B.: Egalitarianism: is leximin the only option? Working papers, Norwegian School of Economics and Business Administration (1999). http://EconPapers.repec.org/RePEc:fth:norgee:4/99
Viana, H., Alcântara, J.: Propositional Belief Merging with T-conorms (proofs) https://db.tt/OZWSR0EO
Weber, S.: A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. Fuzzy Sets Syst. 11(1–3), 103–113 (1983)
Yager, R.R.: On a general class of fuzzy connectives. Fuzzy Sets Syst. 4(3), 235–242 (1980)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Viana, H., Alcântara, J. (2017). Propositional Belief Merging with T-conorms. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada, V. (eds) Multi-Agent Systems and Agreement Technologies. EUMAS AT 2016 2016. Lecture Notes in Computer Science(), vol 10207. Springer, Cham. https://doi.org/10.1007/978-3-319-59294-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-59294-7_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59293-0
Online ISBN: 978-3-319-59294-7
eBook Packages: Computer ScienceComputer Science (R0)