Skip to main content

Principles of Mobile Walking Robot Control in Scope of Technical Monitoring Tasks

  • Conference paper
  • First Online:
Advances in Dependability Engineering of Complex Systems (DepCoS-RELCOMEX 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 582))

Included in the following conference series:

  • 894 Accesses

Abstract

The article describes control synthesis for mobile walking robot, which has an interval mathematical model. We proposed proof of concept for mobile walking robot, carrying load up to sixty percents of robot’s mass. Control system includes a computing unit, seven servos, a three-axis accelerometer and a moving camera operating in a visible optical range. Results of interval algorithms synthesis are shown for robot as an object of automatic control (OAC), with interval mathematical model. We defined the operational mode range of the system, its structure and interval parameters of mathematical model. It is shown that setting of interval values allows adequate modeling and description of processes in dynamic systems such as mobile walking robots. Main goal of this paper is to show possibility of classical Bode Diagram modification and application for the synthesis of interval control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matveyev, S.I.: Vysokotochnyye sistemy RV i A: perspektivy i osnovnyye napravleniya rabot po sozdaniyu razvedyvatel’no-udarnykh i razvedyvatel’no-ognevykh kompleksov. In: Matveyev, S.I. (eds.) [tekst] Voyennaya mysl’, vol. 2, pp. 23–27 (2003)

    Google Scholar 

  2. Myasnikov, Y.V.: Vysokotochnoye oruzhiye i strategicheskiy balans (izdaniye Tsentra po izucheniyu problem razoruzheniya, energetiki i ekologii pri MFTI). (Tekst)/ Ye.V. Myasnikov – Dolgo-prudnyy, p. 43 (2000)

    Google Scholar 

  3. Dergachov, K.YU., Flerko, S.M., Kravtsov, D.V.: Metodika viznachennya optimal’nikh marshrutív rukhu rukhomikh ob’êktív u kompleksí zadach komandnogo punktu dispetchers’koí̈ sistemi [Tekst]. In: Yu, K., Dergachov, S.M., Flerko, D.V. (eds.) Kravtsov Sistemi obrobki ínformatsíí̈. NANU, PANM, KHVU, Kharkív. vol. 1, pp. 213–217 (2005)

    Google Scholar 

  4. Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In: Proceedings of IEEE International Conference on Robotics and Automation (2010)

    Google Scholar 

  5. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. Int. J. Rob. Res. 27(2), 157–173 (2008)

    Article  Google Scholar 

  6. Buehler, M., Playter, R., Raibert, M.: Robots step outside. In: International Symposium on Adaptive Motion of Animals and Machines (AMAM), Ilmenau, Germany, pp. 1–4, September 2005

    Google Scholar 

  7. Koval’chuk, A.K., Kulakov, D.B., Semenov, S.Y., Lomakin, V.O.: Sintez funktsiy upravleniya khod’boy dvunogogo shagayushchego robota pri pomoshchi uproshchennoy matematicheskoy modeli. Nauka i obrazovaniye: Elektronnoye nauchno-tekhnicheskoye izdaniye (2010)

    Google Scholar 

  8. Loffler, K., Gienger, M., Pfeiffer, F.: Sensor and control design of a dynamically stable biped robot. In: IEEE International Conference Robotics and Automation, Proceeding. ICRA APOS 2003. W.t. 2003. vol. 1(14–19), pp. 484–490 (2003)

    Google Scholar 

  9. Bab-Hadiashar, A., Suter, D.: Robust optical flow computation. Int. J. Comput. Vis. 29, 59–77 (1998)

    Article  Google Scholar 

  10. Bruhn, A., Weickert, J., Schnorr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)

    Article  Google Scholar 

  11. Modeli i metody sinteza sistemy avtomaticheskogo pozitsionirovaniya rezhimov vikhrevogo energorazdelitelya (Tekst): dis. … kand. tekhn. nauk: 05.13.03/Pasichnik Sergey Nikolayevich; Nats. aerokosm. un-t im. N. Ye. Zhukovskogo “Khar’k. aviats. in-t”. - KH., vol. 158( l), ris. - Bíblíogr.: ark, pp. 146–158 (2011)

    Google Scholar 

  12. Tekhnicheskaya kibernetika. Teoriya avtomaticheskogo regulirovaniya. Kniga 2. Analiz i sintez lineynykh nepreryvnykh i diskretnykh sistem avtomaticheskogo regulirovaniya [Tekst]. In: Solodovnikova, V.V. (ed). Pod red, Mashinostroyeniye, p. 682 (1967)

    Google Scholar 

  13. Solodovnikova, V.V., Mashgiz, M.: Osnovy avtomaticheskogo regulirovaniya. Pod red (1954)

    Google Scholar 

  14. Kulik, A.S.: Identifikatsiya matematicheskoy modeli vikhrovogo energorazdelitelya v chastotnoy oblasti (Tekst). In: Kulik, A.S., Pasichnik, S.N. (eds.) Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, vol. 7(94), pp. 192–196 (2012)

    Google Scholar 

  15. Tsybakov, B.S., Iakovlev, V.P.: On the accuracy of restoring a function with a finite number of terms of Kotel’nikov series. Radio Eng. Electron. 4(3), 274–275 (1959)

    Google Scholar 

  16. Dugarova, I.V.: Application of interval analysis for the design of the control systems with uncertain parameters, Ph.D. thesis, Tomsk State University, Russia (1989)

    Google Scholar 

  17. Smagina, Y., Brewer, I.V.: Robust modal P and PI regulator synthesis for plant with interval parameters in the state space. In: Proceedings of ACC, Chicago, Illinois, USA, pp. 1317–1321 (2000)

    Google Scholar 

  18. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 11th edn. Prentice Hall, Upper Saddle River (2008)

    MATH  Google Scholar 

  19. Vostrikov, A.S.: Sintez sistem regulirovaniya metodom lokalizatsii, p. 251. NGTU, Novosibirsk (2007)

    Google Scholar 

  20. Dorf, R.C., Bishop, R.H.: Modern Control Systems. Addison-Wesley company, New York (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Radomskyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Radomskyi, O. (2018). Principles of Mobile Walking Robot Control in Scope of Technical Monitoring Tasks. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) Advances in Dependability Engineering of Complex Systems. DepCoS-RELCOMEX 2017. Advances in Intelligent Systems and Computing, vol 582. Springer, Cham. https://doi.org/10.1007/978-3-319-59415-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59415-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59414-9

  • Online ISBN: 978-3-319-59415-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics