Skip to main content

Deep Stacking Convex Neuro-Fuzzy System and Its On-line Learning

  • Conference paper
  • First Online:
Advances in Dependability Engineering of Complex Systems (DepCoS-RELCOMEX 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 582))

Included in the following conference series:

Abstract

In the paper the architecture of Deep Stacking Convex Neuro-Fuzzy System for data stream processing in on-line mode is proposed. The advantage of proposed system is that its layers are formed by multivariate modification of hybrid generalized additive neuro-fuzzy system. Such system is characterized by simplicity of computational implementation, high speed learning, increased approximation properties. For learning of the proposed system both conventional least squares method (including its recurrent version) and specialized learning procedures, which have tracking and smoothing properties are used. Proposed system is aimed at solving of wide range of Data Stream Mining problems, which are connected with processing of nonstationary stochastic and chaotic processes under conditions when information is fed to the system in on-line mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  2. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  3. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, New York (2016)

    Google Scholar 

  4. Peleshko, D., Ivanov, Y., Sharov, B., Izonin, I., Borzov, Y.: Design and implementation of visitors queue density analysis and registration method for retail videosurveillance purposes. In: 2016 IEEE First International Conference on Data Stream Mining and Processing, Lviv, Ukraine, pp. 159–162 (2016)

    Google Scholar 

  5. Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  6. Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., Held, P.: Computational Intelligence. A Methodological Introduction. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  7. Du, K.-L., Swamy, M.N.S.: Neural Networks and Statistical Learning. Springer, London (2014)

    Book  MATH  Google Scholar 

  8. Nelles, O.: Nonlinear Systems Identification. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  9. Hastie, T.J., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer Science+Business Media, LLC, N.Y. (2009)

    Book  MATH  Google Scholar 

  10. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  11. Jang, R.J.-S.: ANFIS: adaptive network based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23(3), 116–132 (1993)

    Article  Google Scholar 

  12. Abiyev, R., Kaynak, O.: Fuzzy wavelet neural networks for identification and control of dynamic plants – a novel structure and a comparative study. IEEE Trans. Ind. Electron. 55(2), 3133–3140 (2008)

    Article  Google Scholar 

  13. Bodyanskiy, Y., Vynokurova, O.: Hybrid adaptive wavelet-neuro-fuzzy system for chaotic time series identification. Inf. Sci. 220, 170–179 (2013)

    Article  Google Scholar 

  14. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Advances Neural Information Processing Systems, pp. 524–532. Morgan Kaufman, San Mateo (1990)

    Google Scholar 

  15. Bodyanskiy, Y., Tyshchenko, O., Kopaliani, D.: A multidimensional cascade neuro-fuzzy system with neuron pool optimization in each cascade. Int. J. Inf. Technol. Comput. Sci. 6(8), 11–17 (2014)

    Google Scholar 

  16. Bodyanskiy, Y., Tyshchenko, O.: Fast deep learning for cascade neuro-fuzzy system. In: 2nd International Workshop and Networking Event “Advances in Data Science”, Holny Mejera, Poland, pp. 18–19 (2016)

    Google Scholar 

  17. Bodyanskiy, Y., Pliss, I., Peleshko, D., Vynokurova, O.: Adaptive deep learning of multivariate hybrid system of computational intelligence. In: VIIth International Conference on Decision-Making Theory, Uzhhorod, Ukraine, pp. 58–59 (2016). (In Ukrainian)

    Google Scholar 

  18. Wang, L.-X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice Hall, Upper-Saddle River (1994)

    Google Scholar 

  19. Yamakawa, T., Uchino, E., Miki, T., Kusanagi, H.: A neo-fuzzy neuron and its applications to system identification and prediction of the system behavior. In: 2nd International Conference on Fuzzy Logic and Neural Networks, IIZUKA 1992, Iizuka, Japan, pp. 477–483 (1992)

    Google Scholar 

  20. Miki, T., Yamakawa, T.: Analog implementation of neo-fuzzy neuron and its on-board learning. In: Mastorakis, N.E. (ed.) Computational Intelligence and Application, pp. 144–149. WSES Press, Piraeus (1999)

    Google Scholar 

  21. Bodyanskiy, Y., Mulesa, P., Setlak, G., Pliss, I., Vynokurova, O.: Fast learning algorithm for deep evolving GMDH-SVM neural network in data stream mining tasks. In: 2016 IEEE First International Conference on Data Stream Mining and Processing (DSMP), pp. 257–262 (2016)

    Google Scholar 

  22. Bodyanskiy, Y., Setlak, G., Pliss, I.P., Vynokurova, O.: Hybrid neuro-neo-fuzzy system and its adaptive learning algorithm. In: Xth IEEE International Science and Technology Conference on Computer Science and Information Technologies, Lviv, Ukraine, pp. 111–114 (2015)

    Google Scholar 

  23. Lee, S.-H., Lee, J.-G., Moon, K.-I.: Smart home security system using multiple ANFIS. Int. J. Smart Home 7(3), 121–132 (2013)

    Google Scholar 

  24. Bodyanskiy, Y., Peleshko, D., Setlak, G., Mulesa, P., Vynokurova, O.: Adaptive multivariate generalized additive neuro-fuzzy systems and its on-board fast learning. Neurocomputing 230, 409–416 (2017)

    Article  Google Scholar 

  25. Bodyanskiy, Y., Peleshko, D., Tatarinova, Yu., Vynokurova, O: Architecture of hybrid generalized additive neuro-fuzzy system in modelling technological process. In: XIIIth IEEE International Conference on The Experimental of Designing and Application of CAD Systems in Microelectronics, Lviv-Polyana, Ukraine, pp. 333–335 (2015)

    Google Scholar 

  26. Bodyanskiy, Y., Setlak, G., Peleshko, D., Vynokurova, O.: Hybrid generalized additive neuro-fuzzy system and its adaptive learning algorithms. In: The 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Warsaw, Poland, pp. 328–333 (2015)

    Google Scholar 

  27. Landim, R.P., Rodrignes, B., Silva, S.R., Matos, W.: A neo-fuzzy-neuron with real-time training applied to flux observer for an induction motor. In: Vth Brasilian Symposium on Neural Networks, pp. 67–72. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  28. Silva, A.M., Caminhas, W., Lemos, A., Gomide, F.: A fast learning algorithm for evolving neo-fuzzy neuron. Appl. Soft Comput. J. 14, 194–209 (2014)

    Article  Google Scholar 

  29. Hastie, T.J., Tibshrani, R.J.: Generalized Additive Models. Chapman and Hall, London (1990)

    Google Scholar 

  30. Bossley, K.M., Brown, M., Harris, C.J.: Neuro-fuzzy model construction for modelling of non-linear processes. In: 3rd European Control Conference, Italy, vol. 3, pp. 2438–2443 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Vynokurova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bodyanskiy, Y., Vynokurova, O., Pliss, I., Peleshko, D., Rashkevych, Y. (2018). Deep Stacking Convex Neuro-Fuzzy System and Its On-line Learning. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) Advances in Dependability Engineering of Complex Systems. DepCoS-RELCOMEX 2017. Advances in Intelligent Systems and Computing, vol 582. Springer, Cham. https://doi.org/10.1007/978-3-319-59415-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59415-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59414-9

  • Online ISBN: 978-3-319-59415-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics