Skip to main content

Feasibility of the Estimation of Myocardial Stiffness with Reduced 2D Deformation Data

  • Conference paper
  • First Online:
Functional Imaging and Modelling of the Heart (FIMH 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10263))

  • 1807 Accesses

Abstract

Myocardial stiffness is a useful diagnostic and prognostic biomarker, but only accessible through indirect surrogates. Computational 3D cardiac models, through the process of personalization, can estimate the material parameters of the ventricles, allowing the estimation of stiffness and potentially improving clinical decisions. The availability of detailed 3D cardiac imaging data, which are not routinely available for the conventional cardiologist, is nevertheless required to constrain these models and extract a unique set of parameters. In this work we propose a strategy to provide the same ability to identify the material parameters, but from 2D observations that are obtainable in the clinic (echocardiography). The solution combines the adaptation of an energy-based cost function, and the estimation of the out of plane deformation based on an incompressibility assumption. In-silico results, with an analysis of the sensitivity to errors in the deformation, fibre orientation, and pressure data, demonstrate the feasibility of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cmiss.org/cmgui.

References

  1. Burkhoff, D.: Mortality in heart failure with preserved ejection fraction: an unacceptably high rate. Eur. Heart J. 33(14), 1718–1720 (2012)

    Article  Google Scholar 

  2. Westermann, D., Kasner, M., Steendijk, P., Spillmann, F., Riad, A., Weitmann, K., Hoffmann, W., Poller, W., Pauschinger, M., Schultheiss, H.-P., Tschöpe, C.: Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117(16), 2051–2060 (2008)

    Article  Google Scholar 

  3. Gao, H., Li, W.G., Cai, L., Berry, C., Luo, X.Y.: Parameter estimation in a Holzapfel-Ogden law for healthy myocardium. J. Eng. Math. 95(1), 231–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Nasopoulou, A., Shetty, A., Lee, J., Nordsletten, D., Rinaldi, C.A., Lamata, P., Niederer, S.: Improved identifiability of myocardial material parameters by an energy-based cost function. Biomech. Model. Mechanobiol. (2017)

    Google Scholar 

  5. Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113(1), 42–55 (1991)

    Article  Google Scholar 

  6. Xi, J., Lamata, P., Niederer, S., Land, S., Shi, W., Zhuang, X., Ourselin, S., Duckett, S.G., Shetty, A.K., Rinaldi, C.A., Rueckert, D., Razavi, R., Smith, N.P.: The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17(2), 133–146 (2013)

    Article  Google Scholar 

  7. Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(3), 339–347 (1969)

    Article  Google Scholar 

  8. Hadjicharalambous, M., Chabiniok, R., Asner, L., Sammut, E., Wong, J., Carr-White, G., Lee, J., Razavi, R., Smith, N., Nordsletten, D.: Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI. Biomech. Model. Mechanobiol. 14(4), 807–828 (2014)

    Article  Google Scholar 

  9. Lee, J., Cookson, A., Roy, I., Kerfoot, E., Asner, L., Vigueras, G., Sochi, T., Deparis, S., Michler, C., Smith, N.P., Nordsletten, D.A.: Multiphysics computational modeling in CHeart. SIAM J. Sci. Comput. 38(3), C150–C178 (2016)

    Article  MATH  Google Scholar 

  10. Hadjicharalambous, M., Lee, J., Smith, N.P., Nordsletten, D.A.: A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics. Comput. Methods Appl. Mech. Eng. 274(100), 213–236 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zienkiewicz, O., Taylor, R., Zhu, J.: The Finite Element Method: Its Basis and Fundamentals. Elsevier, Amsterdam (2010)

    MATH  Google Scholar 

  12. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  13. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–21 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Nasopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nasopoulou, A., Nordsletten, D.A., Niederer, S.A., Lamata, P. (2017). Feasibility of the Estimation of Myocardial Stiffness with Reduced 2D Deformation Data. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics