Skip to main content

Analysis of Coronary Contrast Agent Transport in Bolus-Based Quantitative Myocardial Perfusion MRI Measurements with Computational Fluid Dynamics Simulations

  • Conference paper
  • First Online:
Functional Imaging and Modelling of the Heart (FIMH 2017)

Abstract

Aim of the project is the analysis of contrast agent dispersion in bolus-based quantitative myocardial perfusion MRI measurements. 3D-models are extracted from high-resolution cardiovascular cryomicrotome imaging data and subsequently meshed with computational grids. Computational fluid dynamics simulations are performed to solve Navier-Stokes equations for blood flow and the advection-diffusion equation for contrast agent transport to obtain bolus dispersion in epicardial vessels, i.e. bolus duration is increased which results in a systematic underestimation of myocardial blood flow. The dispersion of the injected bolus is observed at different positions along the passage through the cardiovascular vessel geometry and is quantified by means of the variance and transit times of the vascular transport function. We find multi-faceted influences on bolus shape from length of traversed vessels to bifurcation angles and vessel curvature. Therefore, depending on the exact anatomical region systematic errors of blood flow measurements are prone to spatial variance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.vmtk.org

  2. 2.

    www.simvascular.org

  3. 3.

    cfmesh.com, open source meshing library for OpenFOAM.

  4. 4.

    Proprietary meshing software package usable in OpenFOAM.

  5. 5.

    www.openfoam.org

  6. 6.

    https://github.com/Atizar/RapidCFD-dev, OpenFOAM fork for execution on GPU.

References

  1. Graafen, D., Münnemann, K., Weber, S., Kreitner, K.-F., Schreiber, L.M.: Quantitative contrast-enhanced myocardial perfusion magnetic resonance imaging: Simulation of bolus dispersion in constricted vessels. Med. Phys. 36(7), 3099–3106 (2009)

    Article  Google Scholar 

  2. Sommer, K., Bernat, D., Schmidt, R., Breit, H.-C., Schreiber, L.M.: Contrast agent bolus dispersion in a realistic coronary artery geometry: Influence of outlet boundary conditions. Ann. Biomed. Eng. 42(4), 787–796 (2013)

    Article  Google Scholar 

  3. Sommer, K., Schmidt, R., Graafen, D., Breit, H.-C., Schreiber, L.M.: Resting myocardial blood flow quantification using contrast-enhanced magnetic resonance imaging in the presence of stenosis: A computational fluid dynamics study. Med. Phys. 42(7), 4375–4384 (2015)

    Article  Google Scholar 

  4. Calamante, F., Yim, P.J., Cebral, J.R.: Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. NeuroImage 19, 341–353 (2003)

    Article  Google Scholar 

  5. Calamante, F., Willats, L., Gadian, D.G., Connelly, A.: Bolus delay and dispersion in perfusion MRI: Implications for tissue predictor models in stroke. Magn. Reson. Med. 55, 1180–1185 (2006)

    Article  Google Scholar 

  6. van den Wijngaard, J.P.H.M., Schwarz, J.C.V., van Horssen, P., van Lier, M.G.J.T.B., Dobbe, J.G.G., Spaan, J.A.E., Siebes, M.: 3D Imaging of vascular networks for biophysical modeling of perfusion distribution within the heart. Biomech 46, 229–239 (2012)

    Article  Google Scholar 

  7. Spaan, J.A.E., ter Wee, R., van Teeffelen, J.W.G.E., Streekstra, G., Siebes, M., Kolyva, C., Vink, H., Fokkema, D.S., VanBavel, E.: Visualisation of intramural coronary vasculature by an imaging cryomicrotome suggests compartmentalization of myocardial perfusion areas. Med. Biol. Eng. Comput. 43, 431–435 (2005)

    Article  Google Scholar 

  8. De Santis, G., Mortier, P., De Beule, M., Segers, P., Verdonck, P., Verhegghe, B.: Patient-specific computational fluid dynamics: Structured mesh generation from coronary angiography. Med. Biol. Eng. Comput. 48, 371–380 (2010)

    Article  Google Scholar 

  9. Schmidt, R., Graafen, D., Weber, S., Schreiber, L.M.: Computational fluid dynamics simulations of contrast agent bolus dispersion in a coronary bifurcation: Impact on MRI-based quantification of myocardial perfusion. Comput. Math. Methods Med. 2013 (2013)

    Google Scholar 

  10. Endspurt - die Skripten fürs Physikum - Physiologie 1, Georg Thieme Verlag KG (2011)

    Google Scholar 

  11. Olufsen, M.S., Peskin, C.S., Kim, W.Y., Pedersen, E.M., Nadim, A., Larsen, J.: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28, 1281–1299 (2000)

    Article  Google Scholar 

  12. Cousins, W., Gremaud, P.A.: Boundary conditions for hemodynamics: The structured tree revisited. Comput. Phys. 231, 6086–6096 (2012)

    Article  MathSciNet  Google Scholar 

  13. Adam, J.A.: Blood vessel branching: Beyond the standard calculus problem. Math. Mag. 84, 196–207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Graafen, D., Hamer, J., Weber, S., Schreiber, L.M.: Quantitative myocardial perfusion magnetic resonance imaging: The impact of pulsatile flow on contrast agent bolus dispersion. Phys. Med. Biol. 56, 5167–5185 (2011)

    Article  Google Scholar 

  15. Mischi, M., den Boer, J.A., Korsten, H.H.M.: On the physical and stochastic representation of an indicator dilution curve as a gamma fit. Physiol. Meas. 29, 281–294 (2008)

    Article  Google Scholar 

  16. Wieseotte, C., Wagner, M., Schreiber, L.M.: An estimate of Gd-DOTA diffusivity in blood by direct NMR diffusion measurement of its hydrodynamic analogue Ga-DOTA. In: Conference Paper, ISMRM Annual Meeting (2014)

    Google Scholar 

  17. Ewing, R.J., Bonekamp, D., Barker, P.B.: Clinical Perfusion MRI - Techniques and Applications. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  18. Graafen, D.: Diploma Thesis. Johannes Gutenberg University Mainz, Untersuchung der Blutströmung in Herzkranzarterien mittels Computational Fluid Dynamics (2008)

    Google Scholar 

  19. King, R.B., Deussen, A., Raymond, G.M., Bassingthwaighte, J.B.: A vascular transport operator. Am. J. Physiol. 265, H2196–H2208 (1993)

    Google Scholar 

Download references

Acknowledgments

We acknowledge financial support of German Ministry of Education and Research (BMBF, grants: 01EO1004, 01E1O1504). We acknowledge University Kaiserslautern for access to HPC-cluster elwetritsch. Special thanks to Dr. Karsten Sommer and Regine Schmidt (University Mainz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Martens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Martens, J., Panzer, S., van den Wijngaard, J.P.H.M., Siebes, M., Schreiber, L.M. (2017). Analysis of Coronary Contrast Agent Transport in Bolus-Based Quantitative Myocardial Perfusion MRI Measurements with Computational Fluid Dynamics Simulations. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics