Skip to main content

Improving Spatial Reasoning by Interacting with a Humanoid Robot

  • Conference paper
  • First Online:
Intelligent Interactive Multimedia Systems and Services 2017 (KES-IIMSS-18 2018)

Abstract

This paper analyzes the connection between spatial reasoning and STEM education from the point of view of embodied theories of cognition. A new learning model based on the use of a humanoid robot is presented with the aim of teaching and learning basic STEM concepts in a fruitful and engaging fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Project funded by the European Commission’s 7th Framework Programme and supported of major international industry partners http://www.ingenious-science.eu.

References

  1. Sianesi, B., Reenen, J.V.: The returns to education: macroeconomics. J. Econ. Surv. 17(2), 157–200 (2003)

    Article  Google Scholar 

  2. Krueger, A.B., Lindahl, M.: Education for growth: why and for whom? (No. w7591). National Bureau of Economic Research (2000)

    Google Scholar 

  3. Hanushek, E.A., Woessmann, L.: The High Cost of Low Educational Performance: The Long-Run Economic Impact of Improving PISA Outcomes. OECD Publishing, Paris Cedex (2010). 2, rue Andre Pascal, F-75775 16, France

    Google Scholar 

  4. Hanushek, E.A., Woessmann, L.: Do better schools lead to more growth? Cognitive skills, economic outcomes, and causation. J. Econ. Growth 17(4), 267–321 (2012)

    Article  MATH  Google Scholar 

  5. Hanushek, E.A., Woessmann, L.: The role of cognitive skills in economic development. J. Econ. Lit. 46(3), 607–668 (2008)

    Article  Google Scholar 

  6. UNESCO 2010, Engineering: Issues, challenges and opportunities for development,UNESCO, the World Federation of Engineering Organisations, the InternationalCouncil of Academies of Engineering and Technological Sciences, and the International Federation of Consulting Engineers

    Google Scholar 

  7. UNESCO 2007, Science, technology and gender: An international report, Scienceand Technology for Development Series, UNESCO, Division for Science Policy and Sustainable Development

    Google Scholar 

  8. Marginson, S., Tytler, R., Freeman, B., Roberts, K.: STEM: country comparisons: international comparisons of science, technology, engineering and mathematics (STEM) education. Final report, Australian Council of Learned Academies (2013)

    Google Scholar 

  9. Kanematsu, H., Barry, D.M.: STEM and ICT Education in Intelligent Environments, vol. 91, pp. 3–198. Springer (2016)

    Google Scholar 

  10. Russell-Gebbett, J.: Skills and strategiespupils’ approaches to three-dimensional problems in biology. J. Biol. Educ. 19(4), 293–298 (1985)

    Article  Google Scholar 

  11. Kozhevnikov, M., Motes, M.A., Hegarty, M.: Spatial visualization in physics problem solving. Cogn. Sci. 31(4), 549–579 (2007)

    Article  Google Scholar 

  12. Wu, H.K., Shah, P.: Exploring visuospatial thinking in chemistry learning. Sci. Educ. 88(3), 465–492 (2004)

    Article  Google Scholar 

  13. Wai, J., Lubinski, D., Benbow, C.P.: Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance. J. Educ. Psychol. 101(4), 817 (2009)

    Article  Google Scholar 

  14. Shea, D.L., Lubinski, D., Benbow, C.P.: Importance of assessing spatial ability in intellectually talented young adolescents: a 20-year longitudinal study. J. Educ. Psychol. 93(3), 604 (2001)

    Article  Google Scholar 

  15. Uttal, D.H., Cohen, C.A.: 4 spatial thinking and STEM education: when, why, and how? Psychol. Learn. Motiv. Adv. Res. Theor. 57, 147 (2012)

    Article  Google Scholar 

  16. Uttal, D.H., Meadow, N.G., Tipton, E., Hand, L.L., Alden, A.R., Warren, C., Newcombe, N.S.: The malleability of spatial skills: a meta-analysis of training studies. Psychol. Bull. 139, 352–402 (2013)

    Article  Google Scholar 

  17. Shapiro, L.: Embodied Cognition. Routledge, London (2010)

    Google Scholar 

  18. Gersmehl, P.J., Gersmehl, C.A.: Spatial thinking by young children: neurologic evidence for early development and educability. J. Geogr. 106(5), 181–191 (2007)

    Article  Google Scholar 

  19. Nagy-Kondor, R.: Spatial ability: measurement and development. In: Visual-Spatial Ability in STEM Education, pp. 35–58. Springer International Publishing (2017)

    Google Scholar 

  20. Linn, M.C., Petersen, A.C.: Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Dev. 56, 1479–1498 (1985)

    Article  Google Scholar 

  21. Williams, C.B., Gero, J., Lee, Y., Paretti, M.: Exploring spatial reasoning ability and design cognition in undergraduate engineering students. In: ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 669–676. American Society of Mechanical Engineers, January 2010

    Google Scholar 

  22. Khan, S., Francis, K., Davis, B.: Accumulation of experience in a vast number of cases: enactivism as a fit framework for the study of spatial reasoning in mathematics education. ZDM 47(2), 269–279 (2015)

    Article  Google Scholar 

  23. Bruce, C.D., Moss, J., Sinclair, N., Whiteley, W., Okamoto, Y., McGarvey, L., Davis, B.: Early years spatial reasoning: learning, teaching, and research implications. In: Workshop Presented at the NCTM Research Presession: Linking Research and Practice, Denver, CO. (2013)

    Google Scholar 

  24. Shepard, R.N., Metzler, J.: Mental rotation of three-dimensional objects. Science 171(3972), 701–703 (1971)

    Article  Google Scholar 

  25. Metzler, J., Shepard, R.N.: Transformational studies of the internal representation of three-dimensional objects (1974)

    Google Scholar 

  26. Di Paolo, E.A., Thompson, E.: The enactive approach. In: Shapiro, L. (ed.) The Routledge Handbook of Embodied Cognition, pp. 68–78. Routledge, New York (2014)

    Google Scholar 

  27. Bishop, J.M., Martin, A.O. (eds.): Contemporary Sensorimotor Theory. Springer, Heidelberg (2014)

    Google Scholar 

  28. Smith, L.B.: Cognition as a dynamic system: principles from embodiment. Dev. Rev. 25(3–4), 278–298 (2005)

    Article  Google Scholar 

  29. Määttänen, P.: Experience and Embodied Cognition in Pragmatism, vol. 18. Springer, Cham (2015)

    Google Scholar 

  30. Crifaci, G., Città, G., Raso, R., Gentile, M., Allegra, M.: Neuroeducation in the light of embodied cognition: an innovative perspective. In: Proceedings of the 2015 International Conference on Education and Modern Educational Technologies (EMET 2015), pp. 21–24 (2015)

    Google Scholar 

  31. Vandenberg, S.G., Kuse, A.R.: Mental rotations, a group test of three-dimensional spatial visualization. Percept. Motor Skills 47(2), 599–604 (1978)

    Article  Google Scholar 

  32. CEEB Special Aptitude Test in Spatial Relations, developed by the College Entrance Examination Board, USA (1939)

    Google Scholar 

  33. Osterrieth, P.A.: Le test de copie d’une figure complexe. Arch. Psychol. 30, 206–356 (1944)

    Google Scholar 

  34. Augello, A., Infantino, I., Manfrè, A., Pilato, G., Vella, F., Chella, A.: Creation and cognition for humanoid live dancing. Robot. Auton. Syst. 86, 128–137 (2016)

    Article  Google Scholar 

  35. Augello, A., Infantino, I., Maniscalco, U., Pilato, G., Vella, F.: The effects of soft somatosensory system on the execution of robotic tasks. IEEE Robot. Comput. (2017)

    Google Scholar 

  36. NAO robot. https://www.ald.softbankrobotics.com/en

  37. Robotics Operating System. http://wiki.ros.org/it

  38. Keren, G., Ben-David, A., Fridin, M.: Kindergarten assistive robotics (KAR) as a tool for spatial cognition development in pre-school education. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnese Augello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Augello, A. et al. (2018). Improving Spatial Reasoning by Interacting with a Humanoid Robot. In: De Pietro, G., Gallo, L., Howlett, R., Jain, L. (eds) Intelligent Interactive Multimedia Systems and Services 2017. KES-IIMSS-18 2018. Smart Innovation, Systems and Technologies, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-59480-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59480-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59479-8

  • Online ISBN: 978-3-319-59480-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics