Abstract
This paper presents a Named Entity Classification system, which uses profiles and machine learning based on [6]. Aiming at confirming its domain independence, it is tested on two domains: general - CONLL2002 corpus, and medical - DrugSemantics gold standard. Given our overall results (CONLL2002, F1 = 67.06; DrugSemantics, F1 = 71.49), our methodology has proven to be domain independent.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\frac{W}{2}\) words after and before the entity.
References
Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm. Mach. Learn. 37(3), 277–296 (1999)
Kitoogo, F., Baryamureeba, V.: Towards domain independent named entity recognition. In: Strengthening the Role of ICT in Development, pp. 84–95 (2008)
Lopes, L., Vieira, R.: Building and applying profiles through term extraction. In: X Brazilian Symposium in Information and Human Language Technology, Natal, Brazil, pp. 91–100 (2015). https://aclweb.org/anthology/W/W15/W15-5613.pdf
Marrero, M., Urbano, J., Sánchez-Cuadrado, S., Morato, J., Gómez-Berbís, J.M.: Named entity recognition: fallacies, challenges and opportunities. Comput. Stan. Interfaces 35(5), 482–489 (2013)
Moreno, I., Moreda, P., Romá-Ferri, M.T.: Reconocimiento de entidades nombradas en dominios restringidos. In: Actas del III Workshop en Tecnologías de la Informática, Alicante, Spain, pp. 41–57 (2012)
Moreno, I., Moreda, P., Romá-Ferri, M.T.: An active ingredients entity recogniser system based on profiles. In: Proceedings of 21st International Conference on Applications of Natural Language to Information Systems, pp. 276–284 (2016)
Tjong Kim Sang, E.F.: Introduction to the CoNLL-2002 shared task. In: Proceedings of the 6th Conference on Natural Language Learning (2002)
Tkachenko, M., Simanovsky, A.: Selecting features for domain-independent named entity recognition. In: Proceedings of KONVENS 2012, pp. 248–253 (2012)
Vicente, M., Lloret, E.: Exploring flexibility in natural language generation throughout discursive analysis of new textual genres. In: Proceedings of the 2nd International Workshop FETLT (2016)
Acknowledgments
This paper has been supported by the Spanish Government (TIN2015-65100-R; TIN2015-65136-C02-2-R), Generalitat Valenciana (PROMETEOII/2014/001) and BBVA Foundation (FUNDACIONBBVA2-16PREMIOI).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Moreno, I., Romá-Ferri, M.T., Moreda, P. (2017). Named Entity Classification Based on Profiles: A Domain Independent Approach. In: Frasincar, F., Ittoo, A., Nguyen, L., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2017. Lecture Notes in Computer Science(), vol 10260. Springer, Cham. https://doi.org/10.1007/978-3-319-59569-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-59569-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59568-9
Online ISBN: 978-3-319-59569-6
eBook Packages: Computer ScienceComputer Science (R0)