Skip to main content

Named Entity Classification Based on Profiles: A Domain Independent Approach

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2017)

Abstract

This paper presents a Named Entity Classification system, which uses profiles and machine learning based on [6]. Aiming at confirming its domain independence, it is tested on two domains: general - CONLL2002 corpus, and medical - DrugSemantics gold standard. Given our overall results (CONLL2002, F1 = 67.06; DrugSemantics, F1 = 71.49), our methodology has proven to be domain independent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\frac{W}{2}\) words after and before the entity.

References

  1. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm. Mach. Learn. 37(3), 277–296 (1999)

    Article  MATH  Google Scholar 

  2. Kitoogo, F., Baryamureeba, V.: Towards domain independent named entity recognition. In: Strengthening the Role of ICT in Development, pp. 84–95 (2008)

    Google Scholar 

  3. Lopes, L., Vieira, R.: Building and applying profiles through term extraction. In: X Brazilian Symposium in Information and Human Language Technology, Natal, Brazil, pp. 91–100 (2015). https://aclweb.org/anthology/W/W15/W15-5613.pdf

  4. Marrero, M., Urbano, J., Sánchez-Cuadrado, S., Morato, J., Gómez-Berbís, J.M.: Named entity recognition: fallacies, challenges and opportunities. Comput. Stan. Interfaces 35(5), 482–489 (2013)

    Article  Google Scholar 

  5. Moreno, I., Moreda, P., Romá-Ferri, M.T.: Reconocimiento de entidades nombradas en dominios restringidos. In: Actas del III Workshop en Tecnologías de la Informática, Alicante, Spain, pp. 41–57 (2012)

    Google Scholar 

  6. Moreno, I., Moreda, P., Romá-Ferri, M.T.: An active ingredients entity recogniser system based on profiles. In: Proceedings of 21st International Conference on Applications of Natural Language to Information Systems, pp. 276–284 (2016)

    Google Scholar 

  7. Tjong Kim Sang, E.F.: Introduction to the CoNLL-2002 shared task. In: Proceedings of the 6th Conference on Natural Language Learning (2002)

    Google Scholar 

  8. Tkachenko, M., Simanovsky, A.: Selecting features for domain-independent named entity recognition. In: Proceedings of KONVENS 2012, pp. 248–253 (2012)

    Google Scholar 

  9. Vicente, M., Lloret, E.: Exploring flexibility in natural language generation throughout discursive analysis of new textual genres. In: Proceedings of the 2nd International Workshop FETLT (2016)

    Google Scholar 

Download references

Acknowledgments

This paper has been supported by the Spanish Government (TIN2015-65100-R; TIN2015-65136-C02-2-R), Generalitat Valenciana (PROMETEOII/2014/001) and BBVA Foundation (FUNDACIONBBVA2-16PREMIOI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Moreno, I., Romá-Ferri, M.T., Moreda, P. (2017). Named Entity Classification Based on Profiles: A Domain Independent Approach. In: Frasincar, F., Ittoo, A., Nguyen, L., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2017. Lecture Notes in Computer Science(), vol 10260. Springer, Cham. https://doi.org/10.1007/978-3-319-59569-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59569-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59568-9

  • Online ISBN: 978-3-319-59569-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics