Skip to main content

Constructing Technical Knowledge Organizations from Document Structures

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10260))

  • 1915 Accesses

Abstract

Semantic Search emerged as the new system paradigm in enterprise information systems. These information systems allow for the problem-oriented and context-aware access of relevant information. Ontologies, as a formal knowledge organization, represent the key component in these information systems, since they enable the semantic access to information. However, very few enterprises already can provide technical ontologies for information integration. The manual construction of such knowledge organizations is a time-consuming and error-prone process. In this paper, we present a novel approach that automatically constructs technical knowledge organizations. The approach is based on semantified document structures and constraints that allow for the simple adaptation to new enterprises and information content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.optaplanner.org.

  2. 2.

    https://www.d3web.de.

References

  1. Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE: a semantic wiki for knowledge engineering. Appl. Intell. 35(3), 323–344 (2011). http://dx.doi.org/10.1007/s10489-010-0224-5

    Article  Google Scholar 

  2. Constantin, A., Peroni, S., Pettifer, S., Shotton, D., Vitali, F.: The document components ontology (DoCO). Semant. Web 7, 167–181 (2015)

    Article  Google Scholar 

  3. Di Iorio, A., Peroni, S., Poggi, F., Vitali, F.: Dealing with structural patterns of XML documents. J. Assoc. Inf. Sci. Technol. 65(9), 1884–1900 (2014)

    Article  Google Scholar 

  4. Groza, T., Handschuh, S., Möller, K., Decker, S.: SALT - semantically annotated LaTeX for scientific publications. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 518–532. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72667-8_37

    Chapter  Google Scholar 

  5. Guha, R., McCool, R., Miller, E.: Semantic search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 700–709. ACM (2003)

    Google Scholar 

  6. Isaac, A., Meij, L., Schlobach, S., Wang, S.: An empirical study of instance-based ontology matching. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC - 2007. LNCS, vol. 4825, pp. 253–266. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0_19

    Chapter  Google Scholar 

  7. Şah, M., Wade, V.: Automatic metadata extraction from multilingual enterprise content. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1665–1668. ACM (2010)

    Google Scholar 

Download references

Acknowledgments

The work described in this paper is supported by the German Bundesministerium für Wirtschaft und Energie (BMWi) under the grant ZIM ZF4170601BZ5 “APOSTL: Accessible Performant Ontology Supported Text Learning”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Furth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Furth, S., Baumeister, J. (2017). Constructing Technical Knowledge Organizations from Document Structures. In: Frasincar, F., Ittoo, A., Nguyen, L., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2017. Lecture Notes in Computer Science(), vol 10260. Springer, Cham. https://doi.org/10.1007/978-3-319-59569-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59569-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59568-9

  • Online ISBN: 978-3-319-59569-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics