Abstract
Semantic Search emerged as the new system paradigm in enterprise information systems. These information systems allow for the problem-oriented and context-aware access of relevant information. Ontologies, as a formal knowledge organization, represent the key component in these information systems, since they enable the semantic access to information. However, very few enterprises already can provide technical ontologies for information integration. The manual construction of such knowledge organizations is a time-consuming and error-prone process. In this paper, we present a novel approach that automatically constructs technical knowledge organizations. The approach is based on semantified document structures and constraints that allow for the simple adaptation to new enterprises and information content.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE: a semantic wiki for knowledge engineering. Appl. Intell. 35(3), 323–344 (2011). http://dx.doi.org/10.1007/s10489-010-0224-5
Constantin, A., Peroni, S., Pettifer, S., Shotton, D., Vitali, F.: The document components ontology (DoCO). Semant. Web 7, 167–181 (2015)
Di Iorio, A., Peroni, S., Poggi, F., Vitali, F.: Dealing with structural patterns of XML documents. J. Assoc. Inf. Sci. Technol. 65(9), 1884–1900 (2014)
Groza, T., Handschuh, S., Möller, K., Decker, S.: SALT - semantically annotated LaTeX for scientific publications. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 518–532. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72667-8_37
Guha, R., McCool, R., Miller, E.: Semantic search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 700–709. ACM (2003)
Isaac, A., Meij, L., Schlobach, S., Wang, S.: An empirical study of instance-based ontology matching. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC - 2007. LNCS, vol. 4825, pp. 253–266. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0_19
Şah, M., Wade, V.: Automatic metadata extraction from multilingual enterprise content. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1665–1668. ACM (2010)
Acknowledgments
The work described in this paper is supported by the German Bundesministerium für Wirtschaft und Energie (BMWi) under the grant ZIM ZF4170601BZ5 “APOSTL: Accessible Performant Ontology Supported Text Learning”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Furth, S., Baumeister, J. (2017). Constructing Technical Knowledge Organizations from Document Structures. In: Frasincar, F., Ittoo, A., Nguyen, L., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2017. Lecture Notes in Computer Science(), vol 10260. Springer, Cham. https://doi.org/10.1007/978-3-319-59569-6_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-59569-6_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59568-9
Online ISBN: 978-3-319-59569-6
eBook Packages: Computer ScienceComputer Science (R0)