Abstract
This paper presents a deep learning based dialogue system which has been trained to answer user queries posed as questions during a conversation. The proposed system, though generative, takes advantage of domain specific knowledge for generating valid answers. The evaluation analysis shows that the proposed system obtained a promising result.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). arXiv preprint arXiv:1409.0473
Boella, G., Di Caro, L., Graziadei, M., Cupi, L., Salaroglio, C., Humphreys, L., Konstantinov, H., Marko, K., Robaldo, L., Ruffini, C., Simov, K., Violato, A., Stroetmann, V.: Linking legal open data: breaking the accessibility and language barrier in european legislation and case law. In: Proceedings of the 15th International Conference on Artificial Intelligence and Law, pp. 171–175. ACM (2015)
Boella, G., Di Caro, L., Robaldo, L.: Semantic Relation Extraction from Legislative Text Using Generalized Syntactic Dependencies and Support Vector Machines. Springer, Berlin (2013)
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014). arXiv preprint arXiv:1406.1078
Gu, J., Lu, Z., Li, H., Li, V.: Incorporating copying mechanism in sequence-to-sequence learning (2016). arXiv preprint arXiv:1603.06393
Ji, Z., Lu, Z., Li, H.: An information retrieval approach to short text conversation (2014). arXiv preprint arXiv:1408.6988
Kadlec, R., Schmid, M., Kleindienst, J.: Improved deep learning baselines for Ubuntu corpus dialogs (2015). arXiv preprint arXiv:1510.03753
Li, J., Galley, M., Brockett, C., Spithourakis, G., Gao, J., Dolan, B.: A persona-based neural conversation model (2016). arXiv preprint arXiv:1603.06155
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). arXiv preprint arXiv:1301.3781
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation: In: EMNLP, vol. 14, pp. 1532–1543 (2014)
Ritter, A., Cherry, C., Dolan, W.: Data-driven response generation in social media. In: Proceedings of Empirical Methods in Natural Language Processing (2011)
Serban, I., Sordoni, A., Bengio, Y., Courville, A., Pineau, J.: Building end-to-end dialogue systems using generative hierarchical neural network models (2015). arXiv preprint arXiv:1507.04808
Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation (2015). arXiv preprint arXiv:1503.02364
Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J., Gao, J., Dolan, B.: A neural network approach to context-sensitive generation of conversational responses (2015). arXiv preprint arXiv:1506.06714
Sutskever, I., Vinyals, O., Le, Q.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems (2014)
Vinyals, O., Le, Q.: A neural conversational model (2015). arXiv preprint arXiv:1506.05869
Weizenbaum, J.: Eliza: a computer program for the study of NL communication between man and machine. Commun. ACM 9(1), 36–45 (1966)
Yao, K., Zweig, G., Peng, B.: Attention with intention for a neural network conversation model (2015). arXiv preprint arXiv:1510.08565
Acknowledgments
Kolawole J. Adebayo has received funding from the Erasmus Mundus Joint International Doctoral (Ph.D.) programme in Law, Science and Technology. Luigi Di Caro have received funding from the European Union’s H2020 research and innovation programme under the grant agreement No 690974 for the project “MIREL: MIning and REasoning with Legal texts”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
John, A.K., Di Caro, L., Robaldo, L., Boella, G. (2017). Legalbot: A Deep Learning-Based Conversational Agent in the Legal Domain. In: Frasincar, F., Ittoo, A., Nguyen, L., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2017. Lecture Notes in Computer Science(), vol 10260. Springer, Cham. https://doi.org/10.1007/978-3-319-59569-6_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-59569-6_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59568-9
Online ISBN: 978-3-319-59569-6
eBook Packages: Computer ScienceComputer Science (R0)