Skip to main content

A Hierarchical Iterative Attention Model for Machine Comprehension

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10260))

  • 1941 Accesses

Abstract

Enabling a computer to understand a document so that it can answer comprehension questions is a central, yet unsolved goal of Natural Language Processing, so reading comprehension of text is an important problem in NLP research. In this paper, we propose a novel Hierarchical Iterative Attention model (HIA), which constructs iterative alternating attention mechanism over tree-structured rather than sequential representations. The proposed HIA model continually refines its view of the query and document while aggregating the information required to answer a query, aiming to compute the attentions not only for the document but also the query side, which will benefit from the mutual information. Experimental results show that HIA has achieved significant state-of-the-art performance in public English datasets, such as CNN and Childrens Book Test datasets. Furthermore, HIA also outperforms state-of-the-art systems by a large margin in Chinese datasets, including People Daily and Childrens Fairy Tale datasets, which are recently released and the first Chinese reading comprehension datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CNN and Daily Mail datasets are available at http://cs.nyu.edu/%7ekcho/DMQA.

  2. 2.

    CBTest datasets is available at http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz.

  3. 3.

    People Daily and CFT datasets are available at http://hfl.iflytek.com/chinese-rc.

  4. 4.

    http://www.people.com.cn.

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  2. Chen, D., Bolton, J., Manning, C.D.: A thorough examination of the CNN/daily mail reading comprehension task. arXiv preprint arXiv:1606.02858 (2016)

  3. Chen, D., Manning, C.D.: A fast and accurate dependency parser using neural networks. In: EMNLP, pp. 740–750 (2014)

    Google Scholar 

  4. Chollet, F.: Keras (2015)

    Google Scholar 

  5. Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., Hu, G.: Attention-over-attention neural networks for reading comprehension. arXiv preprint arXiv:1607.04423 (2016)

  6. Cui, Y., Liu, T., Chen, Z., Wang, S., Hu, G.: Consensus attention-based neural networks for Chinese reading comprehension. arXiv preprint arXiv:1607.02250 (2016)

  7. Dhingra, B., Liu, H., Cohen, W.W., Salakhutdinov, R.: Gated-attention readers for text comprehension. arXiv preprint arXiv:1606.01549 (2016)

  8. Fang, W., Hsu, J.Y., Lee, H.y., Lee, L.S.: Hierarchical attention model for improved machine comprehension of spoken content. arXiv preprint arXiv:1608.07775 (2016)

  9. Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., Blunsom, P.: Teaching machines to read and comprehend. In: Advances in Neural Information Processing Systems, pp. 1693–1701 (2015)

    Google Scholar 

  10. Hill, F., Bordes, A., Chopra, S., Weston, J.: The goldilocks principle: reading children’s books with explicit memory representations. arXiv preprint arXiv:1511.02301 (2015)

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Kadlec, R., Schmid, M., Bajgar, O., Kleindienst, J.: Text understanding with the attention sum reader network. arXiv preprint arXiv:1603.01547 (2016)

  13. Kinga, D., Adam, J.B.: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  14. Liu, T., Cui, Y., Yin, Q., Wang, S., Zhang, W., Hu, G.: Generating and exploiting large-scale pseudo training data for zero pronoun resolution. arXiv preprint arXiv:1606.01603 (2016)

  15. Liu, Y., Li, S., Zhang, X., Sui, Z.: Implicit discourse relation classification via multi-task neural networks. arXiv preprint arXiv:1603.02776 (2016)

  16. Liu, Z., Huang, D., Zhang, J., Huang, K.: Research on attention memory networks as a model for learning natural language inference. In: EMNLP 2016, p. 18 (2016)

    Google Scholar 

  17. Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Interspeech, vol. 2, p. 3 (2010)

    Google Scholar 

  18. Miwa, M., Bansal, M.: End-to-end relation extraction using LSTMS on sequences and tree structures. arXiv preprint arXiv:1601.00770 (2016)

  19. Munkhdalai, T., Yu, H.: Neural tree indexers for text understanding. arXiv preprint arXiv:1607.04492 (2016)

  20. Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120 (2013)

  21. Schmidhuber, J.: A fixed size storage O (n3) time complexity learning algorithm for fully recurrent continually running networks. Neural Comput. 4(2), 243–248 (1992)

    Article  Google Scholar 

  22. Sordoni, A., Bachman, P., Trischler, A., Bengio, Y.: Iterative alternating neural attention for machine reading. arXiv preprint arXiv:1606.02245 (2016)

  23. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In: Advances in Neural Information Processing Systems, pp. 2440–2448 (2015)

    Google Scholar 

  24. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075 (2015)

  25. Taylor, W.L.: cloze procedure: a new tool for measuring readability. Journal. Bull. 30(4), 415–433 (1953)

    Google Scholar 

  26. Trischler, A., Ye, Z., Yuan, X., Suleman, K.: Natural language comprehension with the epireader. arXiv preprint arXiv:1606.02270 (2016)

  27. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural Information Processing Systems, pp. 2692–2700 (2015)

    Google Scholar 

  28. Wang, S., Jiang, J.: Machine comprehension using match-LSTM and answer pointer. arXiv preprint arXiv:1608.07905 (2016)

Download references

Acknowledgments

We would like to thank the reviewers for their helpful comments and suggestions to improve the quality of the paper. This research is supported by National Natural Science Foundation of China (No. 61672127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, Z., Huang, D., Zhang, Y., Zhang, C. (2017). A Hierarchical Iterative Attention Model for Machine Comprehension. In: Frasincar, F., Ittoo, A., Nguyen, L., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2017. Lecture Notes in Computer Science(), vol 10260. Springer, Cham. https://doi.org/10.1007/978-3-319-59569-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59569-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59568-9

  • Online ISBN: 978-3-319-59569-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics