Skip to main content

A Median Solver and Phylogenetic Inference Based on DCJ Sorting

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10330))

Included in the following conference series:

  • 1944 Accesses

Abstract

Genome rearrangement is known as one of the main evolutionary mechanisms on the genomic level. Phylogenetic analysis based on rearrangement played a crucial role in biological research in the past decades, especially with the increasing availability of fully sequenced genomes. In general, phylogenetic analysis tries to solve two problems: Small Parsimony Problem (SPP) and Big Parsimony Problem (BPP). Maximum parsimony is a popular approach for SPP and BPP which relies on iteratively solving a NP hard problem, the median problem. As a result, current median solvers and phylogenetic inference methods based on the median problem all face serious problems on scalability and cannot be applied to datasets with large and distant genomes.

In this paper, we propose a new median solver for gene order data that combines double-cut-and-join sorting with the Simulated Annealing algorithm (SAMedian). Based on the median solver, we built a new phylogenetic inference method to solve both SPP and BPP problems. Our experimental results show that the new median solver presents an excellent performance on simulated datasets and the phylogenetic inference tool built based on the new median solver has a better performance than other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, J., Lin, Y., Rajan, V., Hoskins, W., Feng, B., Tang, J.: Analysis of gene copy number changes in tumor phylogenetics. Algorithms Mol. Biol. 11(1), 26 (2016)

    Article  Google Scholar 

  2. Feng, B., Zhou, l., Tang, J.: Ancestral genome reconstruction on whole genome level. Curr. Genomics (2017)

    Google Scholar 

  3. Zhou, J., Lin, Y., Hoskins, W., Tang, J.: An iterative approach for phylogenetic analysis of tumor progression using FISH copy number. In: Harrison, R., Li, Y., Măndoiu, I. (eds.) ISBRA 2015. LNCS, vol. 9096, pp. 402–412. Springer, Cham (2015). doi:10.1007/978-3-319-19048-8_34

    Google Scholar 

  4. Cai, J., Liu, X., Vanneste, K., Proost, S., Tsai, W.-C., Liu, K.-W., Chen, L.-J., He, Y., Xu, Q., Bian, C., et al.: The genome sequence of the orchid phalaenopsis equestris. Nat. Genet. 47(1), 65–72 (2015)

    Article  Google Scholar 

  5. Zhou, J., Lin, Y., Rajan, V., Hoskins, W., Tang, J.: Maximum parsimony analysis of gene copy number changes. In: Pop, M., Touzet, H. (eds.) WABI 2015. LNCS, vol. 9289, pp. 108–120. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48221-6_8

    Chapter  Google Scholar 

  6. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5(3), 555–570 (1998)

    Article  Google Scholar 

  7. Zhou, J., Hu, F., Hoskins, W., Tang, J.: Assessing ancestral genome reconstruction methods by resampling. In: 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 25–31. IEEE (2014)

    Google Scholar 

  8. Moret, B.M.E., Siepel, A.C., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002). doi:10.1007/3-540-45784-4_40

    Chapter  Google Scholar 

  9. Xu, A.W., Moret, B.M.E.: GASTS: parsimony scoring under rearrangements. In: Przytycka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 351–363. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23038-7_29

    Chapter  Google Scholar 

  10. Hu, F., Zhou, J., Zhou, L., Tang, J.: Probabilistic reconstruction of ancestral gene orders with insertions and deletions. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(4), 667–672 (2014)

    Article  Google Scholar 

  11. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  Google Scholar 

  12. Xu, A.W., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS, vol. 5251, pp. 25–37. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87361-7_3

    Chapter  Google Scholar 

  13. Gao, N., Yang, N., Tang, J.: Ancestral genome inference using a genetic algorithm approach. PLoS ONE 8(5), 62156 (2013)

    Article  Google Scholar 

  14. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  15. Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34(5–6), 975–986 (1984)

    Article  MathSciNet  Google Scholar 

  16. Černỳ, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Caprara, A.: On the practical solution of the reversal median problem. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 238–251. Springer, Heidelberg (2001). doi:10.1007/3-540-44696-6_19

    Chapter  Google Scholar 

  19. Lin, Y., Rajan, V., Moret, B.M.: Fast and accurate phylogenetic reconstruction from high-resolution whole-genome data and a novel robustness estimator. J. Comput. Biol. 18(9), 1131–1139 (2011)

    Article  MathSciNet  Google Scholar 

  20. Feijão, P.: Reconstruction of ancestral gene orders using intermediate genomes. BMC Bioinform. 16(14), 3 (2015)

    Article  Google Scholar 

  21. Braga, M.D.V., Willing, E., Stoye, J.: Genomic distance with DCJ and indels. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 90–101. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15294-8_8

    Chapter  Google Scholar 

  22. Shao, M., Moret, B.M.E.: On computing breakpoint distances for genomes with duplicate genes. In: Singh, M. (ed.) RECOMB 2016. LNCS, vol. 9649, pp. 189–203. Springer, Cham (2016). doi:10.1007/978-3-319-31957-5_14

    Chapter  Google Scholar 

  23. Hu, F., Lin, Y., Tang, J.: MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinform. 15(1), 354 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xia, R., Zhou, J., Zhou, L., Feng, B., Tang, J. (2017). A Median Solver and Phylogenetic Inference Based on DCJ Sorting. In: Cai, Z., Daescu, O., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2017. Lecture Notes in Computer Science(), vol 10330. Springer, Cham. https://doi.org/10.1007/978-3-319-59575-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59575-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59574-0

  • Online ISBN: 978-3-319-59575-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics