Skip to main content

Histopathological Diagnosis for Viable and Non-viable Tumor Prediction for Osteosarcoma Using Convolutional Neural Network

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10330))

Included in the following conference series:

Abstract

Pathologists often deal with high complexity and sometimes disagreement over Osteosarcoma tumor classification due to cellular heterogeneity in the dataset. Segmentation and classification of histology tissue in H&E stained tumor image datasets is challenging due to intra-class variations and inter-class similarity, crowded context, and noisy data. In recent years, deep learning approaches have led to encouraging results in breast cancer and prostate cancer analysis. In this paper, we propose a Convolutional neural network (CNN) as a tool to improve efficiency and accuracy of Osteosarcoma tumor classification into tumor classes (viable tumor, necrosis) vs non-tumor. The proposed CNN architecture contains five learned layers: three convolutional layers interspersed with max pooling layers for feature extraction and two fully-connected layers with data augmentation strategies to boost performance. We conclude that the use of neural network can assure high accuracy and efficiency in Osteosarcoma classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deep learning libraries. https://deeplearning4j.org/documentation

  2. Arunachalam, H.B., Mishra, R., Armaselu, B., Daescu, O., Martinez, M., Leavey, P., Rakheja, D., Cederberg, K., Sengupta, A., Nisuilleabhain, M.: Computer aided image segmentation and classification for viable and non-viable tumor identification in osteosarcoma. In: Pacific Symposium on Biocomputing, vol. 22, p. 195 (2016)

    Google Scholar 

  3. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  4. Fischer, A.H., Jacobson, K.A., Rose, J., Zeller, R.: Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protoc. 2008(5), pdb–prot4986 (2008)

    Google Scholar 

  5. Fuchs, T.J., Wild, P.J., Moch, H., Buhmann, J.M.: Computational pathology analysis of tissue microarrays predicts survival of renal clear cell carcinoma patients. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5242, pp. 1–8. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85990-1_1

    Chapter  Google Scholar 

  6. Goode, A., Gilbert, B., Harkes, J., Jukic, D., Satyanarayanan, M., et al.: Openslide: a vendor-neutral software foundation for digital pathology. J. Pathol. Inform. 4(1), 27 (2013)

    Article  Google Scholar 

  7. Irshad, H., Veillard, A., Roux, L., Racoceanu, D.: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2014)

    Article  Google Scholar 

  8. Kothari, S., Phan, J.H., Stokes, T.H., Wang, M.D.: Pathology imaging informatics for quantitative analysis of whole-slide images. J. Am. Med. Inform. Assoc. 20(6), 1099–1108 (2013)

    Article  Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  11. Litjens, G., Sánchez, C.I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., Hulsbergen-Van De Kaa, C., Bult, P., Van Ginneken, B., Van Der Laak, J.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6 (2016)

    Google Scholar 

  12. Malon, C.D., Cosatto, E., et al.: Classification of mitotic figures with convolutional neural networks and seeded blob features. J. Pathol. Inform. 4(1), 9 (2013)

    Article  Google Scholar 

  13. Ottaviani, G., Jaffe, N.: The epidemiology of osteosarcoma. In: Jaffe, N., Bruland, O.S., Bielack, S. (eds.) Pediatric and Adolescent Osteosarcoma, pp. 3–13. Springer, Heidelberg (2009)

    Google Scholar 

  14. Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)

    Article  Google Scholar 

  15. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2560–2567. IEEE (2016)

    Google Scholar 

  16. Su, H., Liu, F., Xie, Y., Xing, F., Meyyappan, S., Yang, L.: Region segmentation in histopathological breast cancer images using deep convolutional neural network. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 55–58. IEEE (2015)

    Google Scholar 

  17. Yu, K.H., Zhang, C., Berry, G.J., Altman, R.B., Ré, C., Rubin, D.L., Snyder, M.: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7 (2016)

    Google Scholar 

Download references

Acknowledgement

This research was partially supported by NSF award IIP14 39718 and CPRIT award RP150164. We would like to thank Harish Arunchalam, Bodgan Armaselu and Dr. Riccardo Ziraldo from our group at UT Dallas, and Dr. Lan Ma, University of Maryland, for their helpful discussions. We also would like to thank John-Paul Bach and Sammy Glick from UT Southwestern Medical Center for their help with the datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashika Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mishra, R., Daescu, O., Leavey, P., Rakheja, D., Sengupta, A. (2017). Histopathological Diagnosis for Viable and Non-viable Tumor Prediction for Osteosarcoma Using Convolutional Neural Network. In: Cai, Z., Daescu, O., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2017. Lecture Notes in Computer Science(), vol 10330. Springer, Cham. https://doi.org/10.1007/978-3-319-59575-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59575-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59574-0

  • Online ISBN: 978-3-319-59575-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics