Skip to main content

Structure Modeling and Molecular Docking Studies of Schizophrenia Candidate Genes, Synapsins 2 (SYN2) and Trace Amino Acid Receptor (TAAR6)

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10330))

Included in the following conference series:

Abstract

Schizophrenia (SZ) is a severe manifesting psychiatric neural disorder with abnormal behavior, disorganized speech and figment of the imagination. The Synapsin II (SYN2) and Trace Amine Associated Receptor (TAAR6) genes has direct association with SZ. In the current study, the 3-dimensional structure of SYN2 and TAAR6 protein is proposed and the protein-protein docking analysis was applied to explore the binding interactions of the candidate proteins. The comparative modeling was performed with the suitable template (Q86VA8 for SYN2 and H0YF79 for TAAR6) which represents the query coverage (71%, 87%), sequence identity (67%, 34%) and the e-value (0.0, 1e-43) respectively. The structure quality of the predicted model of SYN2 and TAAR6 presents 90.7%, and 96.5% residues in the favored region of Ramachandran plot analysis respectively, suggests the good quality models construction. The phylogenetic analysis suggests that the TAAR6 sequence is conserved in chimpanzee and gorilla (>80% homology) whereas the SYN2 is closely related with macaque. The protein docking analysis of SYN2 shows five ionic interactions with Lys-256, Lys-539, Arg-475, Gln-536 and Gln-529 with His-121, Glu-467, Glu-472, Arg-458 and Asp-477 of CAPON. The TAAR6 have two interactions of Glu-33 and Gly-171 with Arg-85 and Lys-52 of the PPP3CC. Current computational study may play a significant role to recruit, analyze and cure the mysteries of schizophrenia neurodegenerative disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Austin, J.: Schizophrenia an update and review. J. Genet. Couns. 14, 329–340 (2005)

    Article  Google Scholar 

  2. Gottesman II, S.: Schizophrenia the Epigenetic Puzzle. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  3. Aleman, A., Kahn, R.S., Selten, J.P.: Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch. Gen. Psychiatr. 60, 565–571 (2003)

    Article  Google Scholar 

  4. Craddock, N., O’Donovan, M.C., Owen, M.J.: Genes for schizophrenia and bipolar disorder. Implications for psychiatric nosology. Schizophr. Bull. 32, 9–16 (2006)

    Article  Google Scholar 

  5. Karayiorgou, M., Gogos, J.A.: Schizophrenia genetics: uncovering positional candidate genes. Eur. J. Hum. Genet. 14, 512–519 (2006)

    Article  Google Scholar 

  6. Pearlson, G.D., Folley, B.S.: Schizophrenia, psychiatric genetics, and Darwinian psychiatry: an evolutionary framework. Schizophr. Bull. 34, 722–733 (2008)

    Article  Google Scholar 

  7. Boks, M.P., Leask, S., Vermunt, J.K., Kahn, R.S.: The structure of psychosis revisited: the role of mood symptoms. Schizophr. Res. 93, 178–185 (2007)

    Article  Google Scholar 

  8. Liu, H., Heath, S.C., Sobin, C., Roos, J.L., Galke, B.L., Blundell, M.L.: Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc. Natl. Acad. Sci. 99, 3717–3722 (2002)

    Article  Google Scholar 

  9. Harrison, P.J., Owen, M.J.: Genes for schizophrenia Recent findings and their pathophysiological implications. Lancet 361, 417–419 (2003)

    Article  Google Scholar 

  10. O’Donovan, M.C., Williams, N.M., Owen, M.J.: Recent advances in the genetics of schizophrenia. Hum. Psychiatry 8, 217–224 (2003)

    Google Scholar 

  11. O’Donovan, M.C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V., Nikolov, I., Hamshere, M., Carroll, L., Georgieva, L.: Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat. Genet. 40, 1053–1055 (2008)

    Article  Google Scholar 

  12. Duan, J., Martinez, M., Sanders, A.R., Hou, C., Saitou, N., Kitano, T., Mowry, B.J., Crowe, R.R., Silverman, J.M., Levinson, D.F., Gejman, P.V.: Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia. Am. J. Hum. Genet. 75, 624–638 (2004)

    Article  Google Scholar 

  13. Hilfiker, S., Pieribone, V.A., Czernik, A.J., Kao, H.T., Augustine, G.J., Green-gard, P.: Synapsins as regulators of neurotransmitter release. Phil. Trans. R Soc. Lond. B 354, 269–279 (1999)

    Article  Google Scholar 

  14. Kao, H.T., Porton, B., Hilfiker, S., Stefani, G., Pieribone, V.A., DeSalle, R.: Molecular evolution of the synapsin gene family. J. Exp. Zool. 285, 360–377 (1999)

    Article  Google Scholar 

  15. Tokumaru, H., Umayahara, K., Pellegrini, L.L., Ishizuka, T., Saisu, H., Betz, H.: SNARE complex oligomerization by synaphin/complexin is essential for synaptic vesicle exocytosis. Cell 104, 421–432 (2001)

    Article  Google Scholar 

  16. Karlin, S., Chen, C., Gentles, A.J., Cleary, M.: Associations between a human disease genes and overlapping gene groups and multiple amino acid runs. Proc. Nat. Acad. Sci. 99, 17008–17013 (2002)

    Article  Google Scholar 

  17. Apweiler, R., Bairoch, A., Wu, C.H.: UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 32(Database issue), D115–D119 (2004). doi:10.1093/nar/gkh131

  18. Altschul, S.F., Madden, T.L., Schäffer, A.A., et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  19. Berman, H.M., Westbroo, J.K., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000). www.rcsb.org

  20. Eswar, N., Eramian, D., Webb, B., Shen, M.Y., Sali, A.: Protein Structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008)

    Article  Google Scholar 

  21. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M.: PROCHECK- a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)

    Article  Google Scholar 

  22. Colovos, C., Yeates, T.O.: Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2, 1511–1519 (1993)

    Article  Google Scholar 

  23. Koichiro, T., Glen, S., Daniel, P., Alan, F., Sudhir, K.: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013)

    Article  Google Scholar 

  24. Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., et al.: The STRING database in 2011: functional interaction networks of proteins globally integrated and scored. Nucleic Acids Res. 39, 561–568 (2011)

    Article  Google Scholar 

  25. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J.: PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005)

    Article  Google Scholar 

  26. Tovchigrechko, A., Vakser, I.A.: GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 34, W310–W314 (2006)

    Article  Google Scholar 

  27. The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC

    Google Scholar 

  28. Prasad, K.S.T., Goel, R., Kandasamy, K., Keerthikumar, S., et al.: Human protein reference database update. Nucleic Acids Res. 37, D767–D772 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Indiana State University for providing support to complete the manuscript. This work was supported by the Indiana State University start-up funds to YB. The work was also supported by the NIH Grant 5P30GM114737, the NIH Grant P20GM103466, and the NIH Grant U54 MD007584.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongsheng Bai or Youping Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Khattak, N.A., Sehgal, S.A., Bai, Y., Deng, Y. (2017). Structure Modeling and Molecular Docking Studies of Schizophrenia Candidate Genes, Synapsins 2 (SYN2) and Trace Amino Acid Receptor (TAAR6). In: Cai, Z., Daescu, O., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2017. Lecture Notes in Computer Science(), vol 10330. Springer, Cham. https://doi.org/10.1007/978-3-319-59575-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59575-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59574-0

  • Online ISBN: 978-3-319-59575-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics