Skip to main content

Monitorability Bounds via Expander, Sparsifier and Random Walks

The Interplay Between On-Demand Monitoring and Anonymity (Extendend Abstract)

  • Conference paper
  • First Online:
Networked Systems (NETYS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10299))

Included in the following conference series:

Abstract

Software-defined networking (SDN), network functions virtualization (NFV) and network virtualization (NV) build a mini-cosmos inside data centers, cloud providers, and enterprises.

The network virtualization allows new on-demand management capabilities, in this work we demonstrate such a service, namely, on-demand efficient monitoring or anonymity. The proposed service is based on network virtualization of expanders or sparsifiers over the physical network. The defined virtual (or overlay) communication graphs coupled with a multi-hop extension of Valiant randomization based routing lets us monitor the entire traffic in the network, with a very few monitoring nodes.

In particular, we show that using overlay network with expansion properties and Valiant randomized load balancing it is enough to place O(m) monitor nodes when the length of the overlay path (number of intermediate nodes chosen by Valiant’s routing procedure) is O(n/m).

We propose two randomized routing methods to implement policies for sending messages, and we show that they facilitate efficient monitoring of the entire traffic, such that the traffic is distributed uniformly in the network, and each monitor has an equiprobable view of the network flow. In terms of complex networks, our result can be interpreted as a way to enforce the same betweenness centrality to all nodes in the network.

Additionally, we show that our results are useful in employing anonymity services. Thus, we propose monitoring or anonymity services, which can be deployed and shut down on-demand. Our work is the first, as far as we know, to bring such on-demand infrastructure structuring using the cloud NV capability to existing monitoring or anonymity networks. We propose methods that theoretically improve services provided by existing anonymity networks, and optimize the degree of anonymity, in addition to providing robustness and reliability to system usage and security.

At last, we believe, that our constructions of overlay expanders and sparsifiers weighted network, that use several random walk trees, are of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We thank Noga Alon for drawing our attention to this observation.

References

  1. Alon, N., Avin, C., Koucky, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random walks are faster than one. In: Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and Architectures, SPAA 2008, NY, USA, pp. 119–128. ACM, New York (2008)

    Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (2004)

    MATH  Google Scholar 

  3. Altshuler, Y., Dolev, S., Elovici, Y.: TTLed random walks for collaborative monitoring in mobile and social networks. In: Thai, M.T., Pardalos, P.M. (eds.) Handbook of Optimization in Complex Networks. Springer Optimization and Its Applications, vol. 57, pp. 507–538. Springer, New York (2012)

    Google Scholar 

  4. Beimel, D.: Buses for anonymous message delivery. J. Cryptology 16(1), 25–39 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borgatti, S.P.: Centrality and network flow. Soc. Netw. 27(1), 55–71 (2005)

    Article  MathSciNet  Google Scholar 

  6. Boubendir, A., Bertin, E., Simoni, N.: NaaS architecture through SDN-enabled NFV: network openness towards web communication service providers. In: NOMS 2016–2016 IEEE/IFIP Network Operations and Management Symposium, pp. 722–726 (2016)

    Google Scholar 

  7. Boubendir, A., Bertin, E., Simoni, N.: On-demand dynamic network service deployment over NaaS architecture. In: NOMS 2016–2016 IEEE/IFIP Network Operations and Management Symposium, pp. 1023–1024. IEEE (2016)

    Google Scholar 

  8. Broder, A.: Generating random spanning trees. In: 30th Annual Symposium on Foundations of Computer Science 1989, pp. 442–447. IEEE (1989)

    Google Scholar 

  9. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untraceability. J. Cryptology 1, 65–75 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1981)

    Article  Google Scholar 

  11. Chung, F.: Spectral Graph Theory. Series in Mathematics, vol. 92. American Mathematical Society, Washington, DC (1996)

    Google Scholar 

  12. Danezis, G.: Mix-networks with restricted routes. In: Dingledine, R. (ed.) PET 2003. LNCS, vol. 2760, pp. 1–17. Springer, Heidelberg (2003). doi:10.1007/978-3-540-40956-4_1

    Chapter  Google Scholar 

  13. Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003). doi:10.1007/3-540-36467-6_5

    Chapter  Google Scholar 

  14. Diaz, C., Murdoch, S.J., Troncoso, C.: Impact of network topology on anonymity and overhead in low-latency anonymity networks. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 184–201. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14527-8_11

    Chapter  Google Scholar 

  15. Dolev, S., Elovici, Y., Puzis, R.: Routing betweenness centrality. J. ACM 57(4), 25:1–25:27 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dolev, S., Khankin, D.: Monitorability bounds via expander, sparsifier and random walks. The interplay between on-demand monitoring and anonymity arXiv:1612.02569 [cs] (2016)

  17. Dolev, S., Ostrobsky, R.: Xor-trees for efficient anonymous multicast and reception. ACM Trans. Inf. Syst. Secur. 3(2), 63–84 (2000)

    Article  Google Scholar 

  18. Dolev, S., Tzachar, N.: Spanders: distributed spanning expanders. In: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC 2010, NY, USA, pp. 1309–1314. ACM, New York (2010)

    Google Scholar 

  19. Dubhashi, D., Ranjan, D.: Balls and bins: a study in negative dependence. Random Struct. Algorithms 13(2), 99–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Erdin, E., Zachor, C., Gunes, M.H.: How to find hidden users: a survey of attacks on anonymity networks. IEEE Commun. Surv. Tutorials 17(4), 2296–2316 (2015)

    Article  Google Scholar 

  21. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  22. Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs: a measure of betweenness based on network flow. Soc. Netw. 13(2), 141–154 (1991)

    Article  MathSciNet  Google Scholar 

  23. Fundation, O.N: Software-defined networking: the new norm for networks. ONF White Paper (2012)

    Google Scholar 

  24. Fung, W.S., Hariharan, R., Harvey, N.J., Panigrahi, D.: A general framework for graph sparsification. In: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, STOC 2011, NY, USA, pp. 71–80. ACM, New York (2011)

    Google Scholar 

  25. Goh, K.I., Kahng, B., Kim, D.: Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87(27 Pt 1), 278701 (2001)

    Article  Google Scholar 

  26. Goldreich, O.: Basic facts about expander graphs. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation. LNCS, vol. 6650, pp. 451–464. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22670-0_30

    Chapter  Google Scholar 

  27. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg (1996). doi:10.1007/3-540-61996-8_37

    Chapter  Google Scholar 

  28. Goyal, N., Rademacher, L., Vempala, S.: Expanders via random spanning trees. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 576–585. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2009)

    Google Scholar 

  29. Hermoni, O., Gilboa, N., Felstaine, E., Dolev, S.: Rendezvous tunnel for anonymous publishing. Peer-to-Peer Networking Appl. 8(3), 352–366 (2014)

    Article  Google Scholar 

  30. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Motiwala, M., Elmore, M., Feamster, N., Vempala, S.: Path splicing. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication, SIGCOMM 2008, NY, USA, pp. 27–38. ACM, New York (2008)

    Google Scholar 

  32. Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity — a proposal for terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001). doi:10.1007/3-540-44702-4_1

    Chapter  Google Scholar 

  33. Rao, S.K.: SDN and its use-cases-NV and NFV. Network 2, H6 (2014)

    Google Scholar 

  34. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003). doi:10.1007/3-540-36467-6_4

    Chapter  Google Scholar 

  35. Snell, J.L.: Topics in Contemporary Probability and Its Applications. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  36. Troncoso, C., Danezis, G.: The bayesian traffic analysis of mix networks. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, CCS 2009, NY, USA, pp. 369–379. ACM, New York (2009)

    Google Scholar 

  37. Valiant, L.G.: A scheme for fast parallel communication. SIAM J. Comput. 11(2), 350–361 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wright, M.K., Adler, M., Levine, B.N., Shields, C.: The predecessor attack: an analysis of a threat to anonymous communications systems. ACM Trans. Inf. Syst. Secur. 7(4), 489–522 (2004)

    Article  Google Scholar 

Download references

Acknowledgment

The research was partially supported by the Rita Altura Trust Chair in Computer Sciences; The Lynne and William Frankel Center for Computer Science; the grant of the Ministry of Science, Technology and Space, Israel, and the National Science Council (NSC) of Taiwan; the Ministry of Foreign Affairs, Italy; the Ministry of Science, Technology and Space, Infrastructure Research in the Field of Advanced Computing and Cyber Security; and the Israel National Cyber Bureau. We thank Noga Alon for the elaborate discussion and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Khankin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dolev, S., Khankin, D. (2017). Monitorability Bounds via Expander, Sparsifier and Random Walks. In: El Abbadi, A., Garbinato, B. (eds) Networked Systems. NETYS 2017. Lecture Notes in Computer Science(), vol 10299. Springer, Cham. https://doi.org/10.1007/978-3-319-59647-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59647-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59646-4

  • Online ISBN: 978-3-319-59647-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics