Skip to main content

Effectiveness of Basic and Advanced Sampling Strategies on the Classification of Imbalanced Data. A Comparative Study Using Classical and Novel Metrics

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10334))

Included in the following conference series:

Abstract

The imbalanced class problem is noteworthy given its impact on the induction of predictive models and its constant presence in several application areas. It is a challenge in supervised classification, since most of classifiers are very sensitive to class distributions. Consequently, the predictive model is biased to the majority class, which leads to a low performance. In this paper, we analyze the reliability of resampling strategies through the influence of some factors such as dataset characteristics and the classifiers used for building the models, in order to improve the performance and determine which resampling method will be used according to these factors. Experiments over 24 real datasets with different imbalance ratio, using six different classifiers, seven resampling algorithms and six performance evaluation measures have been conducted aiming at showing which resampling method will be the most suitable depending on these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, H., García, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Engine 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  2. Chawla, N., Bowyer, K., Hall, L., Kebelmeyer, W.P.: SMOTE: synthetic minority over sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    MATH  Google Scholar 

  3. Laurikkala, J.: Improving identification of difficult small classes by balancing class distribution. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS, vol. 2101, pp. 63–66. Springer, Heidelberg (2001). doi:10.1007/3-540-48229-6_9

    Chapter  Google Scholar 

  4. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one side selection. In: Fisher, D.H. (ed.) ICML, pp. 179–186. Morgan Kaufmann, San Francisco (1979)

    Google Scholar 

  5. Bekkar, M., Alitouche, T.A.: Imbalanced data learning approaches review. Int. J. Data Min. Knowl. Manage. Process (IJDK), 3(4) (2013)

    Google Scholar 

  6. Drummond, C., Holte, R.C.: C4.5, class imbalance and cost sensitivity: why under-sampling beats oversampling. In: Workshop on Learning from Imbalanced Datasets II, held in Conjunction with ICML (2003)

    Google Scholar 

  7. Hart, P.E.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theor. 14, 515–516 (1968)

    Article  Google Scholar 

  8. Garcia, V., Sanchez, J.S., Mollineda, R.A.: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Elsevier 25, 13–21 (2012)

    Google Scholar 

  9. GarcĂ­a, V., Mollineda, R.A., SĂ¡nchez, J.S.: Index of balanced accuracy: a performance measure for skewed class distributions. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds.) IbPRIA 2009. LNCS, vol. 5524, pp. 441–448. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02172-5_57

    Chapter  Google Scholar 

  10. Toussaint, G.T.: A counterexample to Tomek’s consistency theorem for a condensed nearest neighbor decision rule. Pattern Recogn. Lett. 15, 797–801 (1994)

    Article  MATH  Google Scholar 

  11. Tomek, I.: A generalization of the K-NN rule. IEEE Trans. SMC 6, 121–126 (1976)

    MATH  MathSciNet  Google Scholar 

  12. Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. SMC 2(23), 408–421 (1972)

    MATH  MathSciNet  Google Scholar 

  13. Hand, B.J., Batchelor, B.G.: Experiments on the edited condensed nearest neighbor rule. Inf. Sci. 14(3), 171–180 (1978)

    Article  Google Scholar 

  14. Barley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 359–377 (1997)

    Google Scholar 

  15. Jin, H., Ling, C.X.: Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005)

    Article  MathSciNet  Google Scholar 

  16. Ranawana, R., Palade, V.: Optimized precision - a new measure for classifier performance evaluation. In: Proceeding of the IEEE Congress on Computational Intelligence, Vancouver, Canada, pp. 2245–2261 (2006)

    Google Scholar 

  17. Loyola-Gonzalez, O., Martinez-Trinidad, F.J., Carrasco-Ochoa, J.A.: Study of the impact of resampling methods for contrast pattern based classifiers in imbalanced databases. Neurocomputing 175, 935–947 (2016)

    Article  Google Scholar 

  18. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1–37 (2008)

    Article  Google Scholar 

  19. Demsar, J.: Statistical comparison of classifiers over multiple datasets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MATH  MathSciNet  Google Scholar 

  20. Garcia, S., Herrera, F.: An extension on statistical comparisons of classifiers over multiple datasets for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008)

    MATH  Google Scholar 

  21. Hulse, J.V., Khoshgoftaar, T.M., Naplolitano, A.: Experimental perspectives on learning from imbalanced data. In: Proceedings of the 24th International Conference on Machine Learning, Corvalis, Oregon, pp. 935–942 (2007)

    Google Scholar 

  22. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Kraiem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kraiem, M.S., Moreno, M.N. (2017). Effectiveness of Basic and Advanced Sampling Strategies on the Classification of Imbalanced Data. A Comparative Study Using Classical and Novel Metrics. In: MartĂ­nez de PisĂ³n, F., Urraca, R., QuintiĂ¡n, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2017. Lecture Notes in Computer Science(), vol 10334. Springer, Cham. https://doi.org/10.1007/978-3-319-59650-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59650-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59649-5

  • Online ISBN: 978-3-319-59650-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics