Abstract
In this paper, an approach for probability-based class prediction is presented. This approach is based on a combination of a newly proposed Histogram Probability (HP) method and any classification algorithm (in this paper results for combination with Extreme Learning Machines (ELM) and Support Vector Machines (SVM) are presented). Extreme Learning Machines is a method of training a single-hidden layer neural network. The paper contains detailed description and analysis of the HP method by the example of the Iris dataset. Eight datasets, four of which represent computer vision classification problem and are derived from Caltech-256 image database, are used to compare HP method with another probability-output classifier [11, 18].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akusok, A., Bjork, K.M., Miche, Y., Lendasse, A.: High performance extreme learning machines: a complete toolbox for big data applications. Access, IEEE (2015)
Allen, D.M.: The relationship between variable selection and data agumentation and a method for prediction. Technometrics 16(1), 125–127 (1974)
Bay, H., Tuylelaars, T., Van Gool, L.: Surf speeded up robust features. In: 9th European Conference on Computer Vision, vol. 61, no. 2, pp. 346–359 (2006)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78, 1–3 (1950)
Cambria, E., et al.: Extreme learning machines. IEEE Intell. Syst. 28(6), 30–59 (2013)
Change, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (2011)
Dahlquist, G., Björck, Å.: Numerical Methods. Dover Books on Mathematics. Dover Publications, USA (2003)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)
Eirola, E., et al.: Extreme learning machines for multiclass classification: refining predictions with gaussian mixture models. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9095, pp. 153–164. Springer, Cham (2015). doi:10.1007/978-3-319-19222-2_13
Eirola, E., Lendasse, A., Vandewalle, V., Biernacki, C.: Mixture of gaussians for distance estimation with missing data. Neurocomputing 131, 32–42 (2014)
Fabian, P., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 28252830 (2011)
Fogel, I., Sagi, D.: Gabor filters as texture discriminator. Biol. Cybern. 61(2), 103–113 (1978)
Frénay, B., van Heeswijk, M., Miche, Y., Verleysen, M., Lendasse, A.: Feature selection for nonlinear models with extreme learning machines. Neurocomputing 102, 111–124 (2013)
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical report, CNS-TR-2007-001, California Institute of Technology (2007)
Gritsenko, A., Akusok, A., Miche, Y., Björk, K.M., Baek, S., Lendasse, A.: Combined nonlinear visualization and classification: ELMVIS++C. In: The 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2617–2624, IEEE World Congress on Computational Intelligence, July 2016
Gritsenko, A., Eirola, E., Schupp, D., Ratner, E., Lendasse, A.: Probabilistic methods for multiclass classification problems. In: Cao, J., Mao, K., Wu, J., Lendasse, A. (eds.) Proceedings of ELM-2015, vol. 7, pp. 375–397. Springer, Berlin (2016)
Hand, D.J., Yu, K.: Idiot’s bayes - not so stupid after all? Int. Stat. Rev./Revue Internationale de Statistique 69(3), 385–398 (2001)
Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)
Lendasse, A., Akusok, A., Simula, O., Corona, F., Heeswijk, M., Eirola, E., Miche, Y.: Extreme learning machine: a robust modeling technique? Yes! In: Rojas, I., Joya, G., Gabestany, J. (eds.) IWANN 2013. LNCS, vol. 7902, pp. 17–35. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38679-4_2
Lichman, M.: UCI ML Repository (2013). http://archive.ics.uci.edu/ml
Miche, Y., van Heeswijk, M., Bas, P., Simula, O., Lendasse, A.: TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing 74(16), 2413–2421 (2011)
Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010)
Miche, Y., Sorjamaa, A., Lendasse, A.: OP-ELM: theory, experiments and a toolbox. In: Kůrková, V., Neruda, R., KoutnÃk, J. (eds.) ICANN 2008. LNCS, vol. 5163, pp. 145–154. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87536-9_16
Nian, R., He, B., Zheng, B., Van Heeswijk, M., Yu, Q., Miche, Y., Lendasse, A.: Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing 128, 273–284 (2014)
Patil, A.S., Pawar, B.: Automated classification of web sites using naive bayesian algorithm. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, pp. 519–523 (2012)
Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press (1999)
Pouzols, F.M., Lendasse, A.: Evolvin fuzzy optimally pruned extreme learning machine for regression problems. Evolving Syst. 1(1), 43–58 (2010)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)
Robertson, T., Wright, F., Dykstra, R.: Order Restricted Statistical Inference. Probability and Statistics Series. Wiley, Chichester (1988)
Schupp-Omid, D.R., Ratner, E., Gritsenko, A.: Object categorization using statistically-modeled classifier outputs, August 2016. http://www.freepatentsonline.com/y2017/0046615.html, U.S. Patent Application 2017/0046615 A1, Appl. No. 15/237048
Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
Westgard, J.O., Carey, R.N., Wold, S.: Criteria for judging precision and accuracy in method development and evaluation. Clin. Chem. 20(7), 825–833 (1974)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Gritsenko, A., Eirola, E., Schupp, D., Ratner, E., Lendasse, A. (2017). Solve Classification Tasks with Probabilities. Statistically-Modeled Outputs. In: MartÃnez de Pisón, F., Urraca, R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2017. Lecture Notes in Computer Science(), vol 10334. Springer, Cham. https://doi.org/10.1007/978-3-319-59650-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-59650-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59649-5
Online ISBN: 978-3-319-59650-1
eBook Packages: Computer ScienceComputer Science (R0)