Skip to main content

Solve Classification Tasks with Probabilities. Statistically-Modeled Outputs

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10334))

Included in the following conference series:

  • 2677 Accesses

Abstract

In this paper, an approach for probability-based class prediction is presented. This approach is based on a combination of a newly proposed Histogram Probability (HP) method and any classification algorithm (in this paper results for combination with Extreme Learning Machines (ELM) and Support Vector Machines (SVM) are presented). Extreme Learning Machines is a method of training a single-hidden layer neural network. The paper contains detailed description and analysis of the HP method by the example of the Iris dataset. Eight datasets, four of which represent computer vision classification problem and are derived from Caltech-256 image database, are used to compare HP method with another probability-output classifier [11, 18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akusok, A., Bjork, K.M., Miche, Y., Lendasse, A.: High performance extreme learning machines: a complete toolbox for big data applications. Access, IEEE (2015)

    Google Scholar 

  2. Allen, D.M.: The relationship between variable selection and data agumentation and a method for prediction. Technometrics 16(1), 125–127 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bay, H., Tuylelaars, T., Van Gool, L.: Surf speeded up robust features. In: 9th European Conference on Computer Vision, vol. 61, no. 2, pp. 346–359 (2006)

    Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  5. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

  6. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78, 1–3 (1950)

    Article  Google Scholar 

  7. Cambria, E., et al.: Extreme learning machines. IEEE Intell. Syst. 28(6), 30–59 (2013)

    Article  Google Scholar 

  8. Change, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (2011)

    Google Scholar 

  9. Dahlquist, G., Björck, Å.: Numerical Methods. Dover Books on Mathematics. Dover Publications, USA (2003)

    MATH  Google Scholar 

  10. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)

    Google Scholar 

  11. Eirola, E., et al.: Extreme learning machines for multiclass classification: refining predictions with gaussian mixture models. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9095, pp. 153–164. Springer, Cham (2015). doi:10.1007/978-3-319-19222-2_13

    Chapter  Google Scholar 

  12. Eirola, E., Lendasse, A., Vandewalle, V., Biernacki, C.: Mixture of gaussians for distance estimation with missing data. Neurocomputing 131, 32–42 (2014)

    Article  Google Scholar 

  13. Fabian, P., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 28252830 (2011)

    MATH  MathSciNet  Google Scholar 

  14. Fogel, I., Sagi, D.: Gabor filters as texture discriminator. Biol. Cybern. 61(2), 103–113 (1978)

    Google Scholar 

  15. Frénay, B., van Heeswijk, M., Miche, Y., Verleysen, M., Lendasse, A.: Feature selection for nonlinear models with extreme learning machines. Neurocomputing 102, 111–124 (2013)

    Article  Google Scholar 

  16. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical report, CNS-TR-2007-001, California Institute of Technology (2007)

    Google Scholar 

  17. Gritsenko, A., Akusok, A., Miche, Y., Björk, K.M., Baek, S., Lendasse, A.: Combined nonlinear visualization and classification: ELMVIS++C. In: The 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2617–2624, IEEE World Congress on Computational Intelligence, July 2016

    Google Scholar 

  18. Gritsenko, A., Eirola, E., Schupp, D., Ratner, E., Lendasse, A.: Probabilistic methods for multiclass classification problems. In: Cao, J., Mao, K., Wu, J., Lendasse, A. (eds.) Proceedings of ELM-2015, vol. 7, pp. 375–397. Springer, Berlin (2016)

    Google Scholar 

  19. Hand, D.J., Yu, K.: Idiot’s bayes - not so stupid after all? Int. Stat. Rev./Revue Internationale de Statistique 69(3), 385–398 (2001)

    MATH  Google Scholar 

  20. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  21. Lendasse, A., Akusok, A., Simula, O., Corona, F., Heeswijk, M., Eirola, E., Miche, Y.: Extreme learning machine: a robust modeling technique? Yes! In: Rojas, I., Joya, G., Gabestany, J. (eds.) IWANN 2013. LNCS, vol. 7902, pp. 17–35. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38679-4_2

  22. Lichman, M.: UCI ML Repository (2013). http://archive.ics.uci.edu/ml

  23. Miche, Y., van Heeswijk, M., Bas, P., Simula, O., Lendasse, A.: TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing 74(16), 2413–2421 (2011)

    Article  Google Scholar 

  24. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010)

    Article  Google Scholar 

  25. Miche, Y., Sorjamaa, A., Lendasse, A.: OP-ELM: theory, experiments and a toolbox. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008. LNCS, vol. 5163, pp. 145–154. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87536-9_16

    Chapter  Google Scholar 

  26. Nian, R., He, B., Zheng, B., Van Heeswijk, M., Yu, Q., Miche, Y., Lendasse, A.: Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing 128, 273–284 (2014)

    Article  Google Scholar 

  27. Patil, A.S., Pawar, B.: Automated classification of web sites using naive bayesian algorithm. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, pp. 519–523 (2012)

    Google Scholar 

  28. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press (1999)

    Google Scholar 

  29. Pouzols, F.M., Lendasse, A.: Evolvin fuzzy optimally pruned extreme learning machine for regression problems. Evolving Syst. 1(1), 43–58 (2010)

    Article  Google Scholar 

  30. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  31. Robertson, T., Wright, F., Dykstra, R.: Order Restricted Statistical Inference. Probability and Statistics Series. Wiley, Chichester (1988)

    MATH  Google Scholar 

  32. Schupp-Omid, D.R., Ratner, E., Gritsenko, A.: Object categorization using statistically-modeled classifier outputs, August 2016. http://www.freepatentsonline.com/y2017/0046615.html, U.S. Patent Application 2017/0046615 A1, Appl. No. 15/237048

  33. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  34. Westgard, J.O., Carey, R.N., Wold, S.: Criteria for judging precision and accuracy in method development and evaluation. Clin. Chem. 20(7), 825–833 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Gritsenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gritsenko, A., Eirola, E., Schupp, D., Ratner, E., Lendasse, A. (2017). Solve Classification Tasks with Probabilities. Statistically-Modeled Outputs. In: Martínez de Pisón, F., Urraca, R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2017. Lecture Notes in Computer Science(), vol 10334. Springer, Cham. https://doi.org/10.1007/978-3-319-59650-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59650-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59649-5

  • Online ISBN: 978-3-319-59650-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics