Skip to main content

A Review of Distributed Data Models for Learning

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10334))

Included in the following conference series:

Abstract

This paper deals with aspects of data distribution for machine learning tasks, considering the advantages as well as the drawbacks that are frequently associated with data partitioning and its different models. This study, from the point of view of the distributed data, reviews some of the algorithms that have been used to treat each case, although it is not a review of learning or computation algorithms. Finally, this report looks into the issues that new data partitioning-based models such as MapReduce have brought to distributed learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learn. 36(1–2), 105–139 (1999)

    Article  Google Scholar 

  2. Denil, M., Trappenberg, T.: Overlap versus imbalance. In: Farzindar, A., Kešelj, V. (eds.) AI 2010. LNCS, vol. 6085, pp. 220–231. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13059-5_22

    Chapter  Google Scholar 

  3. Weiss, G.M., Provost, F.: Learning when training data is costly: the effect of class distribution on tree induction. J. Artif. Intell. Res. 19, 315–354 (2003)

    MATH  Google Scholar 

  4. Ally, M.: Survey on multiclass classification methods. Neural Netw. pp. 1–9 (2005)

    Google Scholar 

  5. Moreno-Torres, J., Raeder, T., Alaiz-Rodríguez, R., Chawla, N., Herrera, F.: A unifying view on dataset shift in classification. Pattern Recogn. 45(1), 521–530 (2012)

    Article  Google Scholar 

  6. Bekkerman, R., Bilenko, M., Langford, J.: Scaling Up Machine Learning: Parallel and Distributed Approaches. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  7. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). doi:10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  9. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. ACM Spec. Interest Group Knowl. Disc. Data Min. Explor. 6(1), 1–6 (2004)

    Google Scholar 

  10. Schlimmer, J.C., Fisher, D.: A case study of incremental concept induction. In: Fifth National Conference on Artificial Intelligence, pp. 496–501 (1986)

    Google Scholar 

  11. Tsoumakas, G., Vlahavas, I.: Effective stacking of distributed classifiers. In: European Conference in Artificial Intelligence, pp. 340–344 (2002)

    Google Scholar 

  12. Lazarevic, A., Obradovic, Z.: Boosting algorithms for parallel and distributed learning. Distrib. Parallel Databases 11(2), 203–229 (2002)

    Article  MATH  Google Scholar 

  13. Ishibuchi, H., Mihara, S., Nojima, Y.: Parallel distributed hybrid fuzzy GBML models with rule set migration and training data rotation. IEEE Trans. Fuzzy Syst. 21(2), 355–368 (2013)

    Article  Google Scholar 

  14. Provost, F., Hennessy, D.: Distributed machine learning: scaling up with coarse-grained parallelism. In: Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology, pp. 340–347 (1994)

    Google Scholar 

  15. Giordana, A., Saitta, L.: Learning disjunctive concepts by means of genetic algorithms. In: Proceedings of the International Conference on Machine Learning, pp. 96–104 (1994)

    Google Scholar 

  16. Anglano, C., Giordana, A., Bello, G.L., Saitta, L.: An experimental evaluation of coevolutive concept learning. In: Proceedings of the 15th International Conference on Machine Learning, pp. 19–27 (1998)

    Google Scholar 

  17. Rodríguez, M., Escalante, D.M., Peregrín, A.: Efficient distributed genetic algorithm for rule extraction. Appl. Soft Comput. 11(1), 733–743 (2011)

    Article  Google Scholar 

  18. Lopez, L.I., Bardallo, J.M., De Vega, M.A., Peregrin, A.: REGAL-TC: a distributed genetic algorithm for concept learning based on regal and the treatment of counterexamples. Soft. Comput. 15(7), 1389–1403 (2011)

    Article  Google Scholar 

  19. Cantú-Paz, E.: A Survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems 10(2), 141–171 (1998)

    Google Scholar 

  20. Fayyad, U.M., Djorgovski, S.G., Nicholas, W.: Automating analysis and cataloging of sky surveys. In: Advance in Knowledge Discovery and Data Mining, pp. 471–493 (1996)

    Google Scholar 

  21. Peteiro-Barral, G.-B.D.: A survey of methods for distributed machine learning. Proc. Artif. Intell. 2(1), 1–11 (2013)

    Article  Google Scholar 

  22. Chan, P.K., Stolfo, S.J.: Experiments on multistrategy learning by meta-learning. In: Proceedings of the Second International Conference on Information and Knowledge Management, pp. 314–323 (1993)

    Google Scholar 

  23. Triguero, I., Peralta, D., Bacardit, J., García, S., Herrera, F.: MRPR: a MapReduce solution for prototype reduction in big data classification. Neurocomputing 150, 331–345 (2015)

    Article  Google Scholar 

  24. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)

    Article  Google Scholar 

  25. Chan, P.K., Stolfo, S.J.: Toward parallel and distributed learning by meta-learning. In: AAAI Workshop in Knowledge Discovery in Databases, pp. 227–240 (1993)

    Google Scholar 

  26. Chan, P., Stolfo, S.: Experiments on multistrategy learning by meta-learning. In: Proceedings Second International Conference of Information and Knowledge Management, pp. 314–323 (1993)

    Google Scholar 

  27. Peralta, D., Río, S., Ramírez-Gallego, S., Triguero, I., Benítez, J.M., Herrera, F.: Evolutionary feature selection for big data classification: a MapReduce aproach. Math. Probl. Eng. (2015). doi:10.1155/2015/246139

    Google Scholar 

  28. Ramirez, S.: Repository of machine learning algorithm over spark (2016). Accessed Jan 2017

    Google Scholar 

  29. Triguero, I., Río, S., López, V., Bacardit, J., Benítez, J.M., Herrera, F.: ROSEFW-RF: the winner algorithm for the ECBDL’14 big data competition: an extremely imbalanced big data bioinformatics problem. Knowl. Based Syst. 87, 69–79 (2015)

    Article  Google Scholar 

  30. Río, S., López, V., Benítez, J.M., Herrera, F.: On the use of MapReduce for imbalanced big data using random forest. Inf. Sci. 285, 112–137 (2014)

    Article  Google Scholar 

  31. Río, S.: Repository on imbalanced preprocessing MapReduce (2015). https://github.com/saradelrio/hadoop-imbalancedpreprocessing

  32. Luengo, J., Fernández, A., García, S., Herrera, F.: Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling. Soft. Comput. 15(10), 1909–1936 (2011)

    Article  Google Scholar 

  33. Río, S., Benítez, J.M., Herrera, F.: Analysis of data preprocessing increasing the oversampling ratio for extremely imbalanced big data classification. In: IEEE BigDataSE 2015, vol. 2, pp. 180–185 (2015)

    Google Scholar 

  34. Apache Mahout. http://mahout.apache.org. Accessed Jan 2017

  35. Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Xin, D.: Mllib: machine learning in apache spark. J. Mach. Learn. Res. 17(34), 1–7 (2016)

    MATH  MathSciNet  Google Scholar 

  36. Río, S., López, V., Benítez, J.M., Herrera, F.: A MapReduce approach to address big data classification problems based on the fusion of linguistic fuzzy rules. Int. J. Comput. Intell. Syst. 8(3), 422–437 (2015)

    Article  Google Scholar 

  37. Fernandez, A., Río, S., Herrera, F.: Fuzzy rule based classification systems for big data with MapReduce: granularity analysis. Adv. Data Anal. Classif. (2016). doi:10.1007/s11634-016-0260-z

    Google Scholar 

  38. Maillo, J., Ramírez-Gallego, S., Triguero, I., Herrera, F.: kNN-IS: an iterative spark-based design of the k-nearest neighbors classifier for big data. Knowl. Based Syst. (2016). doi:10.1016/j.knosys.2016.06.012

    Google Scholar 

  39. White, T.: Hadoop,The Definitive Guide. OReilly Media Inc., Sebastopol (2012)

    Google Scholar 

  40. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings 2nd USENIX Conference on Hot Topics in Cloud Computing, vol. 10, pp. 10–17 (2010)

    Google Scholar 

  41. Martín, D., Martínez-Ballesteros, M., Río, S., Alcalá-Fdez, J., Riquelme, J., Herrera, F.: MOPNAR-BigData: un diseno MapReduce para la extracción de reglas de asociación cuantitativas en problemas de Big Data. In: CAEPIA 2015, pp. 979–989 (2015)

    Google Scholar 

  42. Verma, A., Llorá, X., Goldberg, D., Campbell, R.: Scaling genetic algorithms using MapReduce. In: Proceedings of the 9th International Conference on Intelligent Systems Design and Applications, pp. 13–18 (2009)

    Google Scholar 

  43. Geronimo, D., Ferrucci, L.F., Murolo, A., Sarro, F.: A parallel genetic algorithm based on hadoop MapReduce for the automatic generation of unit test suites. In: IEEE 5th International Conference Software Testing, Verification and Validation, pp. 785–793 (2012)

    Google Scholar 

  44. Jin, C., Vecchiola, C., Buyya, R.: MRPGA: an extension of MapReduce for parallelizing genetic algorithms. In: Proceeding of the 4th IEEE International Conference on eScience, pp. 214–221 (2008)

    Google Scholar 

  45. Ramírez-Gallego, S., García, S., Mouriño-Talín, H., Martínez-Rego, D., Bolón-Canedo, V., Alonso-Betanzos, A., Benítez, J.M., Herrera, F.: Data discretization: taxonomy and big data challenge. Data Min. Knowl. Disc. 6(1), 5–21 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Spanish Ministry of Education and Science under Project TIN2014- 57251-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rodríguez, M.Á., Fernández, A., Peregrín, A., Herrera, F. (2017). A Review of Distributed Data Models for Learning. In: Martínez de Pisón, F., Urraca, R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2017. Lecture Notes in Computer Science(), vol 10334. Springer, Cham. https://doi.org/10.1007/978-3-319-59650-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59650-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59649-5

  • Online ISBN: 978-3-319-59650-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics