
Querying with Vague Quantifiers
Using Probabilistic Semantics

Christian G. Fermüller, Matthias Hofer, and Magdalena Ortiz

TU Vienna, Austria

Abstract. Many realistic scenarios call for answers to questions involv-
ing vague expressions like almost all, about half, or at least about a third.
We present a modular extension of classical first-order queries over rela-
tional databases, with binary, proportional, semi-fuzzy quantifiers model-
ing such expressions via random sampling. The extended query language
has an intuitive semantics, and allows one to pose natural queries whose
answers. This is also demonstrated by experiments with an implementa-
tion involving the (geographical) MONDIAL data set.

1 Introduction

In verbal communication one frequently uses expressions like about half, at least
about a third, at most about a quarter, almost all, etc. Obviously the meaning
of these expressions is vague, context dependent and potentially also involves in-
tensional aspects, like considerations about specific expectations of speakers and
listeners. Nevertheless such quantifier expressions may be understood as mainly
referring to the proportion of those domain elements satisfying the range predi-
cate that also satisfy the scope predicate. For example, Almost all capitals have
airports refers to the proportion of capitals in the domain of discourse (range
predicate) that satisfy the scope predicate ‘has an airport’, and claims that this
proportion is close to 1. The intrinsic vagueness of quantifier expressions is of-
ten a virtue, rather than a problem: it allows us to communicate concisely and
effectively without having to compute or even to know the precise proportion in
question. This observation motivates the design of formal models of proportional-
ity quantifiers that support efficient and intuitive answers to queries that involve
corresponding formal counterparts of relevant natural language expressions.

In this paper we propose to augment a standard first order query language
over relational and RDF data with quantifiers that allow one to formulate queries
like Which countries are larger than almost all other countries? or (Boolean
queries) like Do at least about two thirds of all capitals have more than a mil-
lion inhabitants? The vagueness of the corresponding quantifier expressions is
modeled by a probabilistic, sampling based semantics, connecting our approach
to game based semantics for so-called semi-fuzzy proportionality quantifiers [5,
6] as explained below.1

1 Although this is not a main concern in this work, we point out that a sampling
based semantics may also be useful to compute quick, approximative answers in face

Related work. Flexible and approximate query answering has received signifi-
cant attention in the database community for several decades, and the literature
on the subject is vast. Our work has some relation to fuzzy query answering, see
[14] and references therein. However, our approach is different in at least two
respects: (1) we want to keep the user interface free of references to degrees of
truth or of set membership, and (2) we base the semantics of semi-fuzzy quan-
tifiers on sampling, rather than on ad hoc truth functions, as usual in fuzzy set
based approaches. We are not aware of similar proposals that modularly extend
existing query languages with proportional quantifiers only, while keeping crisp
both the database and underlying query formalism. Sampling plays an important
role on approximate query answering (see, e.g., [9, 2]), but in this area, the focus
is usually on keeping suitable samples of the data to support the efficient com-
putation of aggregate queries over large data sets, rather than supporting vague
quantifiers formalizing natural language expressions. In this light, we think that
our specific combination of ideas is original and may be of interest.

The paper is organized as follows. We start by providing basic terminology on
(semi-)fuzzy quantifiers in Section 2, and we briefly recall the game and sampling
based approach to fix their semantics in Section 3. Section 4 reviews principles
of statistical sampling that are used in the central Section 5, which presents our
proposal for extending queries with vague proportional quantifiers. In Section 6
we illustrate our approach on a a concrete use case. Section 7 briefly summarizes
our work and presents a few topics for related future research.

2 (Semi-)fuzzy proportionality quantifiers

The standard model for vague quantifier expressions in a computational context
uses fuzzy logic (see, e.g., [20]). A fuzzy set over a domain D is a function

X̃ : D → [0, 1], assigning to each element of D a membership degree in the real
unit interval. Fuzzy sets are intended to model vague or imprecise predicates,
where any given element does not necessarily either determinately satisfy or not
satisfy the predicate, but where X̃(d) is understood as the degree of truth of the

assertion that d satisfies the predicate modeled by X̃. If X̃(d) ∈ {0, 1} for all d ∈
D, one speaks of a crisp set or predicate. Identifying 0 with ‘definitely false’ and
1 with ‘definitely true’, crisp predicates clearly correspond to classical (bivalent)
predicates and crisp sets turns into (membership functions of) ordinary sets.

As already indicated, commonly used (logical) natural language quantifiers
involve a range as well as a scope predicate, i.e. they are binary in the terminology
of, e.g., [4]. This also holds for standard universal and existential quantification:

of massive volumes of data. For example it might be useful to quickly obtain a highly,
but not perfectly reliable answer to a query like Have at least about a quarter of all
citizens lived abroad at some time? without having to visit each relevant entry in a
huge database containing such data for all citizens.

one routinely asserts sentences of the form All A are B or Some A are B.2 For
crisp predicates, we may express the first sentence in classical logic as ∀x(A(x)→
B(x)) and the second one as ∃x(A(x)∧B(x)). But note that such a reduction of
binary quantification to unary quantification is in general not possible for other
binary quantifiers.

Initiated by Zadeh [19], the literature on fuzzy quantifiers is large; we refer
to the monograph [12] and the more recent survey article [4] for an overview of
relevant work. Focusing on binary quantification, a corresponding fuzzy quanti-
fier is given by a truth function vI(Q̃) : Ã × B̃ → [0, 1] mapping any two fuzzy
sets over the domain D into a truth value (degree of truth) in [0, 1]. Here I
refers to an interpretation, that assigns a fuzzy set (fuzzy predicate) over D to

each monadic predicate symbol. If both, the range predicate Ã and the scope
predicate B̃, are crisp, then the quantifier Q̃ is called semi-fuzzy. We identify
the domain elements (members of D) with corresponding constants and assume
throughout this paper that D is finite. Note that both stipulations are well jus-
tified in our database oriented context. This context also motivates the focus
on semi-fuzzy quantifiers, since the predicates correspond to the relations of the
given dataset, which is assumed to be of the usual relational format. (Indeed,
we will not distinguish between a crisp predicate and the corresponding relation
of the dataset.) If vI(Q̃)(A,B) only depends on the proportion

Prop(A,B) =df
|A∩B|
|A|

then Q̃ is a binary proportional semi-fuzzy quantifier. This is the type of quan-
tifier models that we want to incorporate into a classical query language.

3 Semantics via sampling in Giles’s game

As we have seen in the last section, every binary semi-fuzzy proportional quanti-
fier is characterized by a truth function that maps Prop(A,B) into a truth value
in [0, 1]. This triggers the question which of the uncountably many candidates for
truth functions are adequate for modeling particular natural language quantifiers
like almost all or about half. Moreover, one may want to embed correspond-
ing formal quantifiers into a standard t-norm based fuzzy logic, following the
paradigm of contemporary mathematical fuzzy logic, as represented, e.g., in [3].
To address both challenges, Fermüller and Roschger [5, 6] introduced an exten-
sion of Giles’s game based semantics for Lukasiewicz logic [10, 11] that allows
one to derive the truth functions for certain families of proportional semi-fuzzy
quantifiers from rules that regulate attacks on and defenses of logically complex
formulas. We do not care about the logical connectives of Lukasiewicz logic here,
but rather consider queries that feature a single vague quantifier expression ap-
plied to crisp range and scope predicates. For monadic quantifiers (where the

2 Unary quantification, as in All are B and Some are B, can be considered as a special
instance of binary quantification, where the range predicate A is suppressed since it
is identified with the one satisfied by all elements of the range of discourse.

domain D is identified with the range A and thus Prop(A,B) = Prop(B)) one
may formulate game rules like the following for a family of semi-fuzzy quantifiers
Gkm, taken from [6]:

– If the proponent P asserts GkmxF (x) then her opponent O may attack this
statement by betting against k random instances of F (x), while P bets for
m random instances of F (x).

Here, ‘random instance’ refers to a uniformly random choice of a constant d. By
betting for (against) the corresponding instance F (d) a player of the game risks
to have to pay one unit of money to the opposing player if the corresponding
formula turns out to be false (true) in the given interpretation.3 By identifying
the inverse of the expected loss of money of the proponent of a formula with its
degree of truth, one obtains truth functions for corresponding semi-fuzzy quanti-
fiers. In this manner truth functions for Gn2n, for n ≥ 1, can be extracted from the
above rule that amount to reasonable models of the natural language quantifier
at least about a third, parameterized by a certain measure of ‘tolerance’. For
querying we will not directly refer to truth functions, but rather make use of the
observation that each concrete run of the semantic game yields a (dispersive)
classical truth value. This yes/no-reply corresponds to a statistical test using
the randomly chosen constants as sample. In this manner standard principles of
statistics, as explained in the next section, will lead us to a semantics for queries
featuring semi-fuzzy proportionality quantifiers.

4 Principles of sampling

We briefly review the theoretical basis of our sampling based evaluation methods
[13], which we use to specify the semantics of quantifiers in Section 5.2.

Let Y1, . . . , Ys be independent and identically distributed Bernoulli random
variables, i.e. for each i ∈ {1, . . . , s} we have Yi ∈ {0, 1}. Then, it is easy to see

that
∑s
i=1 Yi
s := X

s is a random variable with (scaled) binomial distribution. To
evaluate binary vague proportional quantifiers, we need to estimate the propor-
tion of range elements that also fulfill the scope formula. To this end we need to
relate three parameters, namely the sample size s, the confidence 1−α ∈ (0, 1),
and the precision of the estimate ε ∈ [0, 1]. This can be expressed as follows
[13], where Ps,ρ denotes the probability distribution for a binomial distributed
random variables with parameters s ∈ N and ρ ∈ [0, 1]:

Ps,ρ(|
X

s
− ρ |≥ ε) ≤ α. (1)

The most accurate way to proceed would be to construct confidence regions,
using binomial and beta quantiles, which should certainly be performed for real

3 Actually the overall game is more involved than indicated here, since whole multi-
sets of formulas have to be considered in general, when decomposing formulas into
subformulas in accordance with the rules. For details we refer to [7].

life applications where accuracy matters the most. Another well known and
widely used approach, due to its more efficient nature, makes use of the central
limit theorem [13], for which we have to assume that the sample size is suffi-
ciently large. Following this way we may calculate:

Ps,ρ(| Xs − ρ |< ε) = Ps,ρ(| X−sρ√
sρ(1−ρ)

|< ε
√

s
ρ(1−ρ)) ≈

≈ Φ(ε
√

s
ρ(1−ρ))− Φ(−ε

√
s

ρ(1−ρ)) = 2Φ(ε
√

s
ρ(1−ρ))− 1.

Since Φ is bijective4 and ρ(1− ρ) ≤ 1
4 , we obtain s ≥ (

Φ−1(2−α
2)

2ε)2.
This last inequality tells us which minimum sample size s we have to use to

achieve a certain precision ε with confidence 1 − α. To refer to this functional
relation of the parameters later, we define f : [0, 1]× (0, 1)→ N as follows:

f(ε, α) = d(
Φ−1(2−α

2)

2ε
)2e. (2)

5 Querying with semi-fuzzy quantifiers

In this section, we present our concrete proposal for querying datasets, using a
standard query language extended with semi-fuzzy proportional quantifiers.

For ease of presentation, we take a declarative, logic based view of relational
databases and queries over them [1]. Databases are defined as finite relational
structures over a given signature or schema, and we consider first-order logic
formulas over the same signature as basic query language. As data values we
use constants and integer numbers, and we allow (in)equalities between values
(both constants and integers), and comparisons (<,>,≥, 6=) over integers. This
basic setting captures relational algebra expressions (and thus, basic SQL) over
relational databases. Moreover, significant fragments of other datamodels and
their corresponding query languages can be viewed as special case of FO-queries
over relational data as considered here. This applies in particular to the fragment
of the SPARQL query language for RDF data [17] considered in Section 6

5.1 Relational databases and FO-queries

As usual, we denote by Z the integer numbers, and by N the positive integers. We
define a (relational) schema as comprising a set R of relation names, together
with an arity function ar : R → N, and a function npos that maps each R to a
(possibly empty) subset of {1, . . . , ar(R)} of numeric positions of R.5

Let a relational schema (R, ar ,npos) be given. Let U be a set of constants or
data values, and V be a countably infinite set of variables. A term is an object
in U ∪ Z ∪V. Atoms take the following forms:

4 As it is the distribution function of standard normally distributed random variables.
5 We use a simple definition, compatible with more complex notions of schema, which

may assign, e.g., names and domains to attributes, and integrity constraints.

(i) R(t1, . . . , tar(R)) with R ∈ R, and the ti are terms such that ti ∈ Z ∪V if
i ∈ npos(R), and ti ∈ U ∪V if i 6∈ npos(R);

(ii) t = t′ and t 6= t′ with t, t′ terms; and
(iii) t < t′, t > t′, t ≤ t′ or t ≥ t′, for t, t′ terms in Z ∪V.

An atom is called relational if it is of the form (i), and ground if all its terms
are from U ∪ Z. A database instance (or simply a database) is a finite set D of
ground relational atoms. The active domain of a database D, denoted ADom(D)
is the set of constants and numbers from U ∪ Z that occur in the atoms of D.

Example 1. Consider a schema containing, among others, the following relations:
– unary country and city , with no numeric positions, that is: npos(city) = {}

and npos(country) = {};
– a binary city of that relates cities and the countries they are located in, also

with npos(city of) = {};
– a binary cap of that relates each capital city with the country it is capital

of; again, npos(cap of) = {};
– a binary has pop with npos(has pop) = {2}, which relates countries and

cities, with an integer number denoting its total population;
– a binary hasGDP agr with npos(hasGDP agr) = {2}, which relates coun-

tries with an integer number (between 0 and 100) denoting the percentage
of its GDP that comes from agriculture.

A database D1 over this schema may contain, for example, ground atoms:
country(USA), country(India), . . . city(Chicago), city(Beijing), . . .

cap of (Beijing ,China), cap of (NewDelhi , India), . . .

has pop(China, 1385∗106), has pop(Beijing , 21.6∗106), has pop(Shanghai , 24.3∗106) . . .

An FO-query is a first-order formula ψ(x) with free variables x, built from
atoms in the usual way, using the connectives ¬, ∧, ∨, and the quantifiers ∃ and
∀. We refer to these variables as the answer variables of ψ. The arity of the
query is the number of variables in x. We call a query Boolean if it is 0-ary, that
is, it has no free variables.

We note that a database D can be seen as a Herbrand interpretation over the
predicates in the schema, and with domain ADom(D). An n-ary FO query over
D defines an n-ary relation over ADom(D), which contains precisely the tuples
for which the corresponding formula is satisfied, under the usual semantics.

Let D be a database. A substitution is a mapping σ from variables in V to
values in ADom(D). We write σ(t) for the tuple that results from t by sub-
stituting each variable x with σ(x), and we write σ(ϕ) to denote the formula
that results from ϕ by applying the substitution σ to all its atoms. For x ∈ V,
c ∈ ADom, and a substitution σ, we denote by σ{x 7→ c} the substitution σ′

that has σ′(x) = c, and σ′(y) = σ(y) for all remaining variables in the domain of
σ. Abusing notation, we may disregard order in tuples and treat them as sets.

The satisfaction in D of a formula ψ w.r.t.σ, in symbols D |=σ ψ, is defined
inductively in the natural way:
– For relational atoms, D |=σ R(t) if R(σ(t)) ∈ D.

– For the other atoms, D |=σ t} t′ if σ(t)}σ(t′), where each binary predicate
} ∈ {=, 6=,≥} is interpreted as usual.

– D |=σ ψ1 ∧ ψ2 if D |=σ ψ1 and D |=σ ψ2.
– D |=σ ψ1 ∨ ψ2 if D |=σ ψ1 or D |=σ ψ2.
– D |=σ ¬ψ if D 6|=σ ψ.
– D |=σ ∃x ψ if for some c ∈ ADom(D), we have D |=σ{x7→c} ψ.
– D |=σ ∀x ψ if for each c ∈ ADom(D), we have D |=σ{x7→c} ψ.

Let ψ(x) be a query with answer variables x = (x1, · · · , xn), and let c =
c1, · · · , cn be a tuple of values from U∪Z of the same arity. Then we say that c
is an answer to ψ over D if D |=σ ψ for the substitution σ with xi = ci for each
1 ≤ i ≤ n. In this case, we may write D |= ψ(c).

Note that for ψ a Boolean query, there are two possibilities: if D |= ψ, then
the empty tuple is an answer to ψ. In this case, we may say that ψ is true in D,
or that its answer in D is yes. In the other case, if D 6|= ψ, then the empty tuple
is not an answer to ψ: we say that ψ is false or that its answer is no.

Example 2. The following are simple examples of FO-queries over our example
schema; ψ1 is a Boolean query, while ψ2 is unary and ψ3 is binary.
ψ1: Is there a country with a population of more than one billion people?
ψ2: Which countries have a city with higher population than its capital?
ψ3: Which are the countries, and their capitals, such that no other city in the

country has more inhabitants?

ψ1 := ∃x, y(country(x) ∧ has pop(x, y) ∧ (y > 1000∗106))

ψ2(x) := ∃y1, y2, z1, z2(country(x) ∧ cap of (y1, x) ∧ city of (y2, x)∧
∧ has pop(y1, z1) ∧ has pop(y2, z2) ∧ (z1 < z2))

ψ3(x, y) := ∃z
(
country(x) ∧ cap of (y, x) ∧ has pop(y, z)∧
∀y1, z1((city of (y1, x) ∧ has pop(y1, z1))→ (z1 ≤ z))

)
We note that D1 |= ψ1, that is, its answer is yes, since the substitution σ(x) =
China, σ(y) = 1385∗106 makes the formula true. We can also observe that the
answers to ψ2 contain China, and that (Beijing ,China) is not an answer to ψ3.

5.2 Extending FO-queries with proportional quantifiers

Assume m ∈ N, and let n, k ∈ {0, . . . ,m} with n 6= 0. We consider the following
proportional quantifiers:

Q[≈ kn] about k/n Q[' k
n] at least about k/n Q[/ k

n] at most about k/n

If k = n, then we may read both Q[≈ kn] and Q[' k
n] as almost all, and simply write

Q[≈1]. If k = 0, then we may read Q[≈ kn] and Q[/ k
n] as almost none and write

Q[≈0]. Note that each value of m determines a family of proportional quantifiers.
Throughout the paper we assume m = 4, but any number can be used.6 Now
we define our query language, which extends FO-queries with these quantifiers:

6 We remark that very large values of m do not usually occur in natural language.

Definition 1 (Queries). A query is an expression q(y) of the form

Q̃x
(
R(x,y′), ψ(x,y)

)
where y′ ⊆ y, and:
– Q̃ is any of the proportional quantifiers defined above,
– R(x,y′) is a relational atom using the variables in {x} ∪ y′, and whose

additional terms are from U ∪ Z, and
– ψ(x,y) is an FO-query with answer variables {x} ∪ y.

The answer variables of q are y, and its arity is the number of variables in y.

Example 3. To illustrate our language, we consider the following queries:
q1: Do at least about three quarters of all countries make at most 20% of their

GDP in agriculture?
q2: Do about half of all cities have more than 200000 inhabitants?
q3: Which countries have a capital which has more inhabitants than about half

of all other capitals in the world?
q4: Which countries have a capital that has more inhabitants than almost all

other cities of that country?
The first two are Boolean queries, the other two are unary. Queries q3 and q4 are
very similar, but they differ on the range predicate: it is unary in q3 and binary
in q4. In our syntax, they look as follows:

q1 := Q[' 3
4]x
(
country(x),∃y(hasGDP agr(x, y) ∧ (y ≤ 20))

)
q2 := Q[≈ 1

2]x
(
city(x),∃y(has pop(x, y) ∧ (y > 200000))

)
q3(y) := Q[≈ 1

2]x
(
capital(x),∃z, z′, w(cap of (y, w) ∧ has pop(w, z)∧

∧ has pop(x, z′)→ (z > z′))
)

q4(y) := Q[≈1]x
(
city of (x, y),∃z, z′, w(cap of (y, w) ∧ has pop(w, z)∧

∧ has pop(x, z′)→ (z > z′))
)

We note that D1 |= q1, that is, its answer is yes, since the substitution σ(x) =
China, σ(y) = 1385∗106 makes the formula true. We can also observe that the
answers to q2 contain China, and that (Beijing ,China) is not an answer to q3.

Now we define the semantics of our query language. As we have anticipated,
it is based on sampling, according to the principles discussed in Section 4. We
assume that values in the interval [0, 1] are given for the confidence 1−α ∈ (0, 1)
and precision ε. These values then determine a minimal sample size s = f(ε, α) as
in Equation 2. Then, for testing whether a given tuple of variables c = c1, · · · , cn
of values from U ∪ Z is an answer to a query Q̃x

(
R(x,y′), ψ(x,y)

)
, we take a

sufficiently large random sample of objects x that satisfy R(x, c′) (where c′ is
the restriction of c to the positions from y that occur in y′), and verify whether
the proportion of those for which ψ(x, c) holds are within the desired range.
Note that, since the sample is random, for the same tuple c, we may get different
proportions, and hence a different value, if we repeat the query evaluation. This is
natural, since our semantics of the proportional quantifiers defines a probability

function over the possible answer tuples. As we will illustrate in the next section,
the answers retrieved in this way are reliable, even for modest sample sizes.

Definition 2 (Semantics). Let D be a database, let R(x, c′) be a relational
atom and ψ(x, c) be a FO-query, such that x is the only free variable in both.
Let S ⊆ ADom(D) with S 6= ∅. We define

PropD(S, ψ(x, c)) =
|{c ∈ S | D |={x 7→c} ψ(x, c)}|

|S|

Now we let σ be a substitution from V to ADom(D), and let DR = {c ∈
ADom(D) | R(c, σ(y′)) ∈ D}. We define the semantics of queries as follows:

– D |=σ,S,ε Q
[≈ kn]x

(
R(x,y′), ψ(x,y)

)
if S ⊆ DR and PropD(S, σ(ψ(x,y))) ∈[

k
n − ε,

k
n + ε

]
.

– D |=σ,S,ε Q
[' k

n]x
(
R(x,y′), ψ(x,y)

)
if S ⊆ DR and PropD(S, σ(ψ(x,y))) ∈[

k
n − ε, 1

]
.

– D |=σ,S,ε Q
[/ k

n]x
(
R(x,y′), ψ(x,y)

)
if S ⊆ DR and PropD(S, σ(ψ(x,y))) ∈[

0, kn + ε
]
.

Let ε and α in the interval [0, 1] be given. A tuple c = c1, · · · , cn of values
from U∪Z of the same arity as y is called a sampled answer to ψ over D (with

precision ε and confidence 1 − α) if D |=σ,S,ε Q
[/ k

n]x
(
R(x,y′), ψ(x,y)

)
, where

σ is the substitution with xi = ci for each 1 ≤ i ≤ n, and S ⊆ ADom(D) is a
random sample (with replacement) of size |S| ≥ f(ε, α) as described in Section 4.
In this case, we may write D |=ε,α ψ(c).

6 Proof-of-concept: Querying the MONDIAL database

For illustrating the proposed approach on real life data, we chose the MONDIAL
database7. It is a dataset containing geographical data, that relies on open web
data, such as the CIA factbook, Wikipedia, and atlases. The last major revision
took place in 2015. Like most open web data, the database is not complete, and
data may be somewhat imprecise. However, this is not of major concern here.

We evaluated the queries in Example 3. (In fact, the schema and queries of
our running example are based on MONDIAL). We used the RDF version of
MONDIAL locally and posed standard SPARQL queries, using the Java exten-
sion Apache Jena. This, together with random sampling on the list of query
results, suffices to simulate the evaluation of queries in our language efficiently.
In contrast to other fuzzy querying approaches, like the ones of Bosc and Pivert
[18] we here rely on strictly classical data, and focus on a probabilistic evaluation
of them. Our goal was to test how the sampling based evaluation performs for
particular sample queries. Obviously, if the amount of sampled data increases,
then the difference between the evaluation times for full and partial answers,

7 MONDIAL database. (Last accessed January 30th, 2017). Retrieved from:
https://www.dbis.informatik.uni-goettingen.de/Mondial/

respectively, increases as well. However, for the present example, the MONDIAL
database (16.4MB), they are still in a similar range. Some of our observations are
captured in Figures 1 and 2, which show how the sample size correlates with the
calculated proportions, using only a single iteration per size. Figure 1 shows the
results for the queries q1–q3, and Figure 2 for particular instances of the answer
variable y in query q4. From those results one can straightforwardly evaluate the
answers to the natural language queries. Taking the first one, which asks whether
the proportion in question is at least about 75 percent, the results show that,
for almost all samples sizes, this is the case with (high) confidence 1−α = 0.95.
Similar results hold for the other queries. (Note that in Figure 2 just a small
range of proportions is displayed). Finally, we emphasize that the graphs show
the proportions obtained for one random sample of each size. But the blue line
(sampled results) converges quickly to the red line (correct proportion) if we
increase the number of iterations.

Fig. 1. Left: query q1; middle: query q2; right: query q3. The x-axis always represents
possible sample sizes, i.e. the number of domain elements that fulfill the respective range
predicate. For the left and the middle picture, the y-axis stands for the proportion of
these range objects that also fulfill the scope predicate, while for the right picture it
displays the sizes of answer sets. The blue graph shows the achieved results for one
sample of the sizes from the x-axis. The red graph displays the correct proportions, or
answer set size respectively.

Fig. 2. Query q4, for: left: y = China; middle: y = USA; right: y = India. The x-axis
always represents possible sample sizes, i.e. the number of domain elements that fulfill
the respective range predicate. The y-axis stands for the proportion of these range
objects that also fulfill the scope predicate. The blue graph shows the achieved results
for sample sizes from the x-axis. The red graph displays the correct proportions.

7 Conclusions and Outlook

We have presented an extension of a classical first order query language over
relational data with quantifiers that model vague natural language quantifiers
like about half, almost all, at least about a third, and at most about a quarter.

The proposed semantics of these quantifiers is inspired by an extension of
Giles’s semantic game [10] for Lukasiewicz logic to semi-fuzzy proportional quan-
tifiers that makes use of random selection of witnessing constants [5, 6]. In the
context of Giles game, fuzzy truth functions for these quantifiers are extracted
by identifying expected values resulting from sampling based games with de-
grees of truth. Similarly, our queries trigger a sampling mechanism to return
probabilistic answers; i.e. answers that might differ upon repetition, but that
conform to the specified meaning of the quantifier expressions with high proba-
bility, given particular levels of confidence and precision. We have specified this
semantics in a manner that directly extends standard classical FO-queries and
thus fits well into the usual frameworks for querying relational and RDF data.
As a proof-of-concept we applied the proposed machinery to the RDF version of
the MONDIAL database, illustrating that our approach yields promising results
that encourage further investigations.

We conclude by briefly commenting on some further challenges, possible ex-
tensions, and additional use cases.

Other vague quantifier expressions: The quantifier expressions selected in
Section 5.2 are only specific examples, illustrating a general principle, but
many other interesting natural language quantifiers could be considered. A
particular challenge arises for modeling the often used expressions many and
few, since their meaning does not just depend on the proportion of elements
satisfying the scope predicate, but rather calls for considerations of context
as well as user expectations, as pointed out by linguists (see, e.g., [8, 16, 15]).

Introducing vague predicates: We have only considered classical relational
data here, where all relations and predicates are bi-valent. The ideas un-
derlying our approach to vague quantifier semantics can also be applied to
derive fuzzy models of predicates like large, small, etc. Developing such an
approach and comparing it with existing fuzzy databases might be useful.

Computational gains: Sampling may not only be viewed as a tool for mod-
eling vagueness, but is also a well known approach to obtain more efficient,
approximate answers in face of huge volumes of data [2]. Our current proto-
type implementation is not intended to illustrate such computational gains,
but this is clearly an interesting topic for further research.

Data summarization: While we have focused on querying here, we finally
want to point out that our approach to modeling vague quantifiers may be
even more useful for data summarization. It seems natural to offer sentences
like About half of the provincial capitals have airports and Almost all coun-
tries have ethnic minorities summaries instead of precise statistical data, in
particular if the later are marred by spurious precision.

Acknowledgements

This work was supported by the Austrian Science Fund (FWF) projects I1897-
N25 and W1255-N23.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases: the logical level.
Addison-Wesley Longman Publishing Co., Inc., 1995.

2. S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb:
queries with bounded errors and bounded response times on very large data. In
Proceedings of the 8th ACM European Conference on Computer Systems, pages
29–42. ACM, 2013.

3. P. Cintula, C. G. Fermüller, P. Hájek, and C. Noguera, editors. Handbook of
Mathematical Fuzzy Logic (in three volumes). College Publications, 2011 and 2015.

4. M. Delgado, M. Ruiz, D. Sánchez, and M. Vila. Fuzzy quantification: a state of
the art. Fuzzy Sets and Systems, 242:1–30, 2014.

5. C. Fermüller and C. Roschger. Randomized game semantics for semi-fuzzy quan-
tifiers. In Advances in Computational Intelligence, volume 300, pages 632–641.
Springer, 2012.

6. C. Fermüller and C. Roschger. Randomized game semantics for semi-fuzzy quan-
tifiers. Logic Journal of the IGPL, 22(3):413–439, 2014.

7. C. G. Fermüller. Semantic games for fuzzy logics. In P. Cintula, C. G. Fermüller,
and C. Noguera, editors, Handbook of Mathematical Fuzzy Logic - Volume 3, pages
969–1028. College Publications, 2015.

8. T. Fernando and H. Kamp. Expecting many. In Semantics and Linguistic Theory,
volume 6, pages 53–68. 1996.

9. P. B. Gibbons and Y. Matias. New sampling-based summary statistics for im-
proving approximate query answers. In ACM SIGMOD Record, volume 27, pages
331–342. ACM, 1998.

10. R. Giles. A non-classical logic for physics. Studia Logica, 33(4):397–415, 1974.
11. R. Giles. Semantics for fuzzy reasoning. International Journal of Man-Machine

Studies, 17(4):401–415, 1982.
12. I. Glöckner. Fuzzy quantifiers: A computational theory, volume 193 of Studies in

Fuzziness and Soft Computing. Springer Verlag, 2006.
13. G. Grimmett and D. Welsh. Probability: An Introduction. Oxford UP, 2014.
14. J. Kacprzyk, S. Zadrożny, and G. De Tré. Fuzziness in database management

systems: half a century of developments and future prospects. Fuzzy Sets and
Systems, 281:300–307, 2015.

15. S. Lappin. An intensional parametric semantics for vague quantifiers. Linguistics
& Philosophy, 23(6):599–620, 2000.

16. B. Partee. Many quantifiers. In Proceedings of ESCOL 5, pages 383–402, 1988.
17. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql. ACM

Transactions on Database Systems (TODS), 34(3):16, 2009.
18. O. Pivert and P. Bosc. Fuzzy preference queries to relational databases. World

Scientific, 2012.
19. L. Zadeh. A computational approach to fuzzy quantifiers in natural languages.

Computers & Mathematics with Applications, 9(1):149–184, 1983.
20. L. Zadeh. Fuzzy logic. IEEE: Computer, 21(4):83–93, 1988.

