Skip to main content

Assessment and Comparison of Evolutionary Algorithms for Tuning a Bio-Inspired Retinal Model

  • Conference paper
  • First Online:
Natural and Artificial Computation for Biomedicine and Neuroscience (IWINAC 2017)

Abstract

One of the basic questions in neuroscience is how visual information is encoded in the retina. To design artificial retinal systems it is essential to emulate the mammalian retinal behaviour as well as possible. Furthermore, this is a question of primary interest in the design of an artificial neuroprosthesis where it is necessary to mimic the retina as much as possible. This work selects the best algorithm from a set of well-known evolutionary algorithms to perform a reliable tuning of a retinal model. The proposed design scheme optimizes various parameters belonging to different domains (that is, spatio-temporal filtering and neuromorphic encoding) to compare the biological and the simulated registers. Five algorithms have been tested: three different Genetic Algorithms (SPEA2, NSGA-II and NSGA-III), a Particle Swarm Optimization algorithm and a Differential Evolution algorithm. Their performances have been compared by using the hypervolume indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolb, H., Fernandez, E., Nelson, R.: Webvision: the organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City, UT. https://www.ncbi.nlm.nih.gov/books/NBK11530/

  2. Martínez-Álvarez, A., Crespo-Cano, R., Díaz-Tahoces, A., Cuenca-Asensi, S., Ferrández Vicente, J.M., Fernández, E.: Automatic tuning of a retina model for a cortical visual neuroprosthesis using a multi-objective optimization genetic algorithm. Int. J. Neural Syst. 26(07), 1650021 (2016)

    Article  Google Scholar 

  3. Crespo-Cano, R., Martínez-Álvarez, A., Díaz-Tahoces, A., Cuenca-Asensi, S., Ferrández, J.M., Fernández, E.: On the automatic tuning of a retina model by using a multi-objective optimization genetic algorithm. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 108–118. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_12

    Chapter  Google Scholar 

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston (1989)

    MATH  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Zitzler, E., Laumanns, M., Thiele, L., et al.: SPEA2: improving the strength Pareto evolutionary algorithm. In: Eurogen, vol. 3242, pp. 95–100 (2001)

    Google Scholar 

  8. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  9. Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Heidelberg (2011)

    Google Scholar 

  10. Reyes-Sierra, M., Coello, C.C.: Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)

    MathSciNet  Google Scholar 

  11. Storn, R., Price, K.: Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, vol. 3. ICSI, Berkeley (1995)

    MATH  Google Scholar 

  12. Mezura-Montes, E., Reyes-Sierra, M., Coello, C.A.C.: Multi-objective optimization using differential evolution: a survey of the state-of-the-art. In: Chakraborty, U.K. (ed.) Advances in Differential Evolution, pp. 173–196. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Robič, T., Filipič, B.: DEMO: differential evolution for multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31880-4_36

    Chapter  Google Scholar 

  14. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). doi:10.1007/BFb0056872

    Chapter  Google Scholar 

  15. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  16. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm research: a history and analysis, Technical report. Citeseer (1998)

    Google Scholar 

  17. Díaz-Tahoces, A., Martínez-Álvarez, A., García-Moll, A., Humphreys, L., Bolea, J.Á., Fernández, E.: Towards the reconstruction of moving images by populations of retinal ganglion cells. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 220–227. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_23

    Chapter  Google Scholar 

  18. Hintze, J.L., Nelson, R.D.: Violin plots: a box plot-density trace synergism. Am. Stat. 52(2), 181 (1998). doi:10.2307/2685478

    Google Scholar 

  19. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  20. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47(260), 583 (1952). doi:10.2307/2280779

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Crespo-Cano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Crespo-Cano, R., Martínez-Álvarez, A., Cuenca-Asensi, S., Fernández, E. (2017). Assessment and Comparison of Evolutionary Algorithms for Tuning a Bio-Inspired Retinal Model. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59740-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59739-3

  • Online ISBN: 978-3-319-59740-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics