Skip to main content

Non-linear Covariance Estimation for Reconstructing Neural Activity with MEG/EEG Data

  • Conference paper
  • First Online:
Natural and Artificial Computation for Biomedicine and Neuroscience (IWINAC 2017)

Abstract

MEG/EEG brain imaging approaches are commonly based on linear covariance matrices that contain the prior information needed to solve the inverse problem. We expect that non-linear covariance matrices (or kernel matrices) provide more information than the widely used smoothers (Loreta, MSP) or data-based matrices (beamformers). Data-based covariance matrices have shortcomings such as being prone to be singular, having limited capability in modeling, complicated relationships in the data, and having a fixed form of representation. The multiple sparse priors (MSP) algorithm provides flexibility but in its original form it only contains smoothers. In this work, we propose to modify both MSP and beamformers by introducing a Gaussian kernel matrix with the objective of enhancing the reconstruction of neural activity. The proposed approach was tested with two well-known simulation benchmarks: Haufe’s and SPM. Simulation results showed improvements in the ROIs recognition with Haufe’s benchmark, and smaller localization error with SPM benchmark. A real data validation (MEG and EEG) was performed with the faces-scrambled dataset. The expected active sources were obtained, but their strength presented slight variations.

This work was partially supported by COLCIENCIAS (research projects 122266140116 and 111974455497).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babadi, B., Obregon-Henao, G., Lamus, C., Hamalainen, M.: A subspace pursuit-based iterative greedy hierarchical solution to the neuromagnetic inverse problem. Neuroimage 87, 427–443 (2014)

    Article  Google Scholar 

  2. Baillet, S., Mosher, J., Leahy, R.: Electromagnetic brain mapping. IEEE Signal Process. Mag. 18(6), 14–30 (2001)

    Article  Google Scholar 

  3. Belanche, L.: Developments in kernel design. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN, pp. 369–378 (2013)

    Google Scholar 

  4. Belardinelli, P., Ortiz, E., Barnes, G., Noppeney, U., Preissl, H.: Source reconstruction accuracy of MEG and EEG Bayesian inversion approaches. Plos One 7(12), e51985 (2012)

    Article  Google Scholar 

  5. Dale, A.M., Sereno, M.: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J. Cognit. Neurosci. 5, 162–176 (1993)

    Article  Google Scholar 

  6. Engemann, D.A., Gramfort, A.: Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals. Neuroimage 108, 328–342 (2015)

    Article  Google Scholar 

  7. Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., Henson, R., Flandin, G., Mattout, J.: Multiple sparse priors for the M/EEG inverse problem. NeuroImage 39, 1104–1120 (2008)

    Article  Google Scholar 

  8. Gartner, T.: A survey of kernels for structured data. ACM SIGKDD Explor. Newsl. 5(1), 49–58 (2003)

    Article  Google Scholar 

  9. Grech, R., Cassar, T., Muscat, J., Camilleri, K., Fabri, S., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the inverse problem in EEG source analysis. J. Neuro Eng. Rehabil. 5(1), 25 (2008)

    Article  Google Scholar 

  10. Haufe, S., Ewald, A.: A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies. Brain Topogr. 2016, 1–18 (2016)

    Google Scholar 

  11. Henson, R., Mouchlianitis, E., Friston, K.: MEG and EEG data fusion: simultaneous localisation of face-evoked responses. NeuroImage 47(2), 581–589 (2009)

    Article  Google Scholar 

  12. Henson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J.: A parametric empirical bayesian framework for the EEG/MEG inverse problem: generative models for multi-subject and multi-modal integration. Front. Hum. Neurosci. 5, 16 (2011)

    Article  Google Scholar 

  13. Huang, Y., Parra, L.C., Haufe, S.: The New York head- a precise standardized volume conductor model for EEG source localization and tES targeting. Neuroimage 140, 150–162 (2015)

    Article  Google Scholar 

  14. Lin, F.H., Belliveau, J.W., Dale, A.M., Hamalainen, M.S.: Distributed current estimates using cortical orientation constraints. Hum. Brain Mapp. 29, 1–13 (2006)

    Article  Google Scholar 

  15. López, J.D., Litvak, V., Espinosa, J., Friston, K., Barnes, G.: Algorithmic procedures for bayesian MEG/EEG source reconstruction in SPM. NeuroImage 84, 476–487 (2014)

    Article  Google Scholar 

  16. Álvarez-Meza, A.M., Cárdenas-Peña, D., Castellanos-Dominguez, G.: Unsupervised kernel function building using maximization of information potential variability. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 335–342. Springer, Cham (2014). doi:10.1007/978-3-319-12568-8_41

    Google Scholar 

  17. Pascual-Marqui, R.: Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24, 5–24 (2002)

    Google Scholar 

  18. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  19. Wahba, G.: Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV. University of Winsconsin (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Duque-Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Duque-Muñoz, L., Martinez-Vargas, J.D., Castellanos-Dominguez, G., Vargas-Bonilla, J.F., López, J.D. (2017). Non-linear Covariance Estimation for Reconstructing Neural Activity with MEG/EEG Data. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59740-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59739-3

  • Online ISBN: 978-3-319-59740-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics