Skip to main content

Modelling Time-Series of Glucose Measurements from Diabetes Patients Using Predictive Clustering Trees

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10259))

Included in the following conference series:

  • 2340 Accesses

Abstract

In this paper, we presented the results of data analysis of 1-year measurements from diabetes patients within the Slovenian healthcare project eCare. We focused on looking for groups/clusters of patients with the similar time profile of the glucose values and describe those patients with their clinical status. We treated in a similar way the WONCA scores (i.e., patients’ functional status). Considering the complexity of the data at hand (time series with a different number of measurements and different time intervals), we used predictive clustering trees with dynamic time warping as the distance between time series. The obtained PCTs identified several groups of patients that exhibit similar behavior. More specifically, we described groups of patients that are able to keep under control their disease, and groups that are less successful in that. Furthermore, we identified and described groups of patients that have similar functional status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, C., Michie, S.: A taxonomy of behavior change techniques used in interventions. Health Psychol.: Off. J. Div. Health Psychol. Am. Psychol. Assoc. 27(3), 379–387 (2008)

    Article  Google Scholar 

  2. Beštek, M., Brodnik, A.: Interoperability and mHealth precondition for successful eCare. In: Adibi, S. (ed.) Mobile Health (mHeath) The Technology Road Map. Springer Series in Bio-/Neuroinformatics. Springer, Switzerland (2014). doi:10.1007/978-3-319-12817-7_16

    Google Scholar 

  3. Beštek, M., Brodnik, A.: Preconditions for successful eCare. Inform. Med. Slov. 20(1–2), 17–29 (2015)

    Google Scholar 

  4. Blockeel, H.: Top-down induction of first order logical decision trees. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium (1998)

    Google Scholar 

  5. Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and Regression Trees. Chapman & Hall/CRC, Boca Raton (1984)

    MATH  Google Scholar 

  6. Debeljak, M., Squire, G.R., Kocev, D., Hawes, C., Young, M.W., Džeroski, S.: Analysis of time series data on agroecosystem vegetation using predictive clustering trees. Ecol. Model. 222(14), 2524–2529 (2011)

    Article  Google Scholar 

  7. Džeroski, S.: Introduction: the challenges for data mining. In: 5th International Workshop Knowledge Discovery in Inductive Databases, KDID 2006, pp. 259–300 (2007)

    Google Scholar 

  8. Eljil, K.A.A.S.: Predicting hypoglycemia. In: Diabetic Patients Using Machine Learning Techniques, pp. 1–92. Faculty of the American University of Sharjah College of Engineering, UAE (2014)

    Google Scholar 

  9. Georga, E., Protopappas, V.C.: Short-term vs. long-term analysis of diabetes data: application of machine learning and data mining techniques. In: IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE) (2013)

    Google Scholar 

  10. Gjorgjioski, V.: Distance-based learning from structured data. Ph.D. thesis, International postgraduate school Jožef Stefan, Ljubljana, Slovenia (2015)

    Google Scholar 

  11. Karpel’ev, V.A., Filippov, Y., Tarasov, Y., Boyarsky, M.D., Mayorov, A., Shestakova, M.V., Dedov, I.I.: Mathematical modeling of the blood glucose regulation system in diabetes mellitus patients. Vestn. Ross. Akad. Med. Nauk 70(5), 549–560 (2015). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84948981003&doi=10.15690%2Fvramn.v70.i5.1441&partnerID=40&md5=b578cbe1711a9bee957a656eb681c1c2

    Article  Google Scholar 

  12. Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., Chouvarda, I.: Machine learning and data mining methods in diabetes research. Comput. Struct. Biotechnol. J. 15, 104–116 (2017). http://dx.doi.org/10.1016/j.csbj.2016.12.005

    Article  Google Scholar 

  13. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting structured outputs. Pattern Recognit. 46(3), 817–833 (2013)

    Article  Google Scholar 

  14. Lenert, L., Norman, G.J., Mailhot, M., Patrick, K.: A framework for modeling health behavior protocols and their linkage to behavioral theory. J. Biomed. Inform. 38(4), 270–280 (2005)

    Article  Google Scholar 

  15. Marinov, M., Mosa, A.S.M., Yoo, I., Boren, S.A.: Data-mining technologies for diabetes: a systematic review. J. Diabetes Sci. Technol. 5(6), 1549–1556 (2011). http://dst.sagepub.com/lookup/doi/10.1177/193229681100500631

    Article  Google Scholar 

  16. Reifman, J., Rajaraman, S., Gribok, A., Ward, W.K.: Predictive monitoring for improved management of glucose levels. J. Diabetes Sci. Technol. 1(4), 478–486 (2007). https://www.scopus.com/inward/record.uri?eid=2-s2.0-52449101078&partnerID=40&md5=07e50cc16ed4d23ac38ba713efed205a

    Article  Google Scholar 

  17. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spokenword recognition. IEEE Trans. Acoust. Speech Signal Process. ASSP–26, 43–49 (1978)

    Article  MATH  Google Scholar 

  18. Shivakumar, B.L.: A survey on data-mining technologies for prediction and diagnosis of diabetes (2014)

    Google Scholar 

  19. Slavkov, I., Gjorgjioski, V., Struyf, J., Džeroski, S.: Finding explained groups of time-course gene expression profiles with predictive clustering trees. Mol. BioSyst. 6(4), 729–740 (2010)

    Article  Google Scholar 

  20. Sowjanya, K., Singhal, A., Choudhary, C.: MobDBTest: a machine learning based system for predicting diabetes risk using mobile devices. In: 2015 IEEE International Advance Computing Conference (IACC), pp. 397–402 (2015)

    Google Scholar 

  21. Sumalatha, G., Muniraj, N.J.R.: Survey on medical diagnosis using data mining techniques. In: 2013 International Conference on Optical Imaging Sensor and Security (ICOSS), pp. 1–8 (2013). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6678433

  22. Zecchin, C., Facchinetti, A., Sparacino, G., Cobelli, C.: Reduction of number and duration of hypoglycemic events by glucose prediction methods: a proof-of-concept in silico study. Diabetes Technol. Therapeutics 15(1), 66–77 (2013)

    Article  Google Scholar 

  23. Zhao, C., Yu, C.: Rapid model identification for online subcutaneous glucose concentration prediction for new subjects with type i diabetes. IEEE Trans. Biomed. Eng. 62(5), 1333–1344 (2015). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929075114&doi=10.1109%2FTBME.2014.2387293&partnerID=40&md5=e23db851493020e4f51367ce89f66dcb

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mate Beštek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Beštek, M., Kocev, D., Džeroski, S., Brodnik, A., Iljaž, R. (2017). Modelling Time-Series of Glucose Measurements from Diabetes Patients Using Predictive Clustering Trees. In: ten Teije, A., Popow, C., Holmes, J., Sacchi, L. (eds) Artificial Intelligence in Medicine. AIME 2017. Lecture Notes in Computer Science(), vol 10259. Springer, Cham. https://doi.org/10.1007/978-3-319-59758-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59758-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59757-7

  • Online ISBN: 978-3-319-59758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics