Skip to main content

Combining Multitask Learning and Short Time Series Analysis in Parkinson’s Disease Patients Stratification

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2017)

Abstract

Quality of life of patients with Parkinson’s disease degrades significantly with disease progression. This paper presents a step towards personalized medicine management of Parkinson’s disease patients, based on discovering groups of similar patients. Similarity is based on patients’ medical conditions and changes in the prescribed therapy when the medical conditions change. The presented methodology combines multitask learning using predictive clustering trees and short time series analysis to better understand when a change in medications is required. The experiments on PPMI (Parkinson Progression Markers Initiative) data demonstrate that using the proposed methodology we can identify some clinically confirmed patients’ symptoms suggesting medications change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Retirement age for men (https://en.wikipedia.org/wiki/Retirement_age).

References

  1. Blockeel, H., Raedt, L.D., Ramon, J.: Top-down induction of clustering trees. In: Proceedings of the Fifteenth International Conference on Machine Learning (ICML), pp. 55–63 (1998)

    Google Scholar 

  2. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  3. Foltynie, T., Brayne, C., Barker, R.A.: The heterogeneity of idiopathic Parkinson’s disease. J. Neurol. 249(2), 138–145 (2002)

    Article  Google Scholar 

  4. Fox, S.H., Katzenschlager, R., Lim, S.-Y., Ravina, B., Seppi, K., Coelho, M., Poewe, W., Rascol, O., Goetz, C.G., Sampaio, C.: The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov. Disord. 26(S3), S2–S41 (2011)

    Article  Google Scholar 

  5. Gil, D., Johnson, M.: Diagnosing Parkinson by using artificial neural networks and support vector machines. Glob. J. Comput. Sci. Technol. 9(4), 63–71 (2009)

    Google Scholar 

  6. Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebbins, G.T., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stern, M.B., Dodel, R., et al.: Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23(15), 2129–2170 (2008)

    Article  Google Scholar 

  7. Holzinger, A.: Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning. IEEE Intell. Inform. Bull. 15(1), 6–14 (2014)

    Google Scholar 

  8. Hughes, A.J., Daniel, S.E., Kilford, L., Lees, A.J.: Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55(3), 181–184 (1992)

    Article  Google Scholar 

  9. Lewis, S., Foltynie, T., Blackwell, A., Robbins, T., Owen, A., Barker, R.: Heterogeneity of Parkinson disease in the early clinical stages using a data driven approach. J. Neurol. Neurosurg. Psychiatry 76(3), 343–348 (2005)

    Article  Google Scholar 

  10. Ma, L.-Y., Chan, P., Gu, Z.-Q., Li, F.-F., Feng, T.: Heterogeneity among patients with Parkinson’s disease: cluster analysis and genetic association. J. Neurol. Sci. 351(1), 41–45 (2015)

    Article  Google Scholar 

  11. Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., Coffey, C., Kieburtz, K., Flagg, E., Chowdhury, S., et al.: The Parkinson’s progression markers initiative (PPMI). Prog. Neurobiol. 95(4), 629–635 (2011)

    Article  Google Scholar 

  12. National Collaborating Centre for Chronic Conditions. Parkinson’s Disease: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care. Royal College of Physicians, London (2006)

    Google Scholar 

  13. Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D., Akay, M., Dy, J., Welsh, M., Bonato, P.: Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Trans. Inf Technol. Biomed. 13(6), 864–873 (2009)

    Article  Google Scholar 

  14. Ramani, R.G., Sivagami, G.: Parkinson disease classification using data mining algorithms. Int. J. Comput. Appl. 32(9), 17–22 (2011)

    Google Scholar 

  15. Reijnders, J., Ehrt, U., Lousberg, R., Aarsland, D., Leentjens, A.: The association between motor subtypes and psychopathology in Parkinson’s disease. Parkinsonism Relat. Disord. 15(5), 379–382 (2009)

    Article  Google Scholar 

  16. Riviere, C.N., Reich, S.G., Thakor, N.V.: Adaptive Fourier modeling for quantification of tremor. J. Neurosci. Methods 74(1), 77–87 (1997)

    Article  Google Scholar 

  17. Seppi, K., Weintraub, D., Coelho, M., Perez-Lloret, S., Fox, S.H., Katzenschlager, R., Hametner, E.-M., Poewe, W., Rascol, O., Goetz, C.G., et al.: The movement disorder society evidence-based medicine review update: treatments for the non-motor symptoms of Parkinson’s disease. Mov. Disord. 26(Suppl. S3), S42–S80 (2011)

    Article  Google Scholar 

  18. Timmer, J., Gantert, C., Deuschl, G., Honerkamp, J.: Characteristics of hand tremor time series. Biol. Cybern. 70(1), 75–80 (1993)

    Article  MATH  Google Scholar 

  19. Weintraub, D., Koester, J., Potenza, M.N., Siderowf, A.D., Stacy, M., Voon, V., Whetteckey, J., Wunderlich, G.R., Lang, A.E.: Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch. Neurol. 67(5), 589–595 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the PD_manager project, funded within the EU Framework Programme for Research and Innovation Horizon 2020 grant 643706. We acknowledge the financial support from the Slovenian Research Agency (research core fundings No. P2-0209 and P2-0103). This research has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No. 720270 (HBP SGA1). The data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date information on the study, visit www.ppmi-info.org. PPMI—a public-private partnership—is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners. List of funding partners can be found at www.ppmi-info.org/fundingpartners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Valmarska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Valmarska, A., Miljkovic, D., Konitsiotis, S., Gatsios, D., Lavrač, N., Robnik-Šikonja, M. (2017). Combining Multitask Learning and Short Time Series Analysis in Parkinson’s Disease Patients Stratification. In: ten Teije, A., Popow, C., Holmes, J., Sacchi, L. (eds) Artificial Intelligence in Medicine. AIME 2017. Lecture Notes in Computer Science(), vol 10259. Springer, Cham. https://doi.org/10.1007/978-3-319-59758-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59758-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59757-7

  • Online ISBN: 978-3-319-59758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics