Abstract
The increasing population with chronic diseases and highly engaged in online communication has triggered an urge in healthcare to understand this phenomenon. We propose an automatic approach to analyze the perceived intentions behind public tweets. Our long-term goal is to create high-level, behavioral models of the health information consumers and disseminators, relevant to studies in narrative medicine and health information dissemination. The contributions of this paper are: (1) a validated intention taxonomy, derived from pragmatics and empirically adjusted to Twitter public communication; (2) a tagged health-related corpus of 1100 tweets; (3) an effective approach to automatically discover intentions from text, using supervised machine learning with discourse features only, independent of domain vocabulary. Reasoning on the results, we claim the transferability of our solution to other healthcare corpora, enabling thus more extensive studies in the concerned domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process. J. 50(2), 179–211 (1991)
Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press, Massachusetts (1987)
Calvert, J.K.: An ecological view of internet health information seeking behavior predictors: findings from the chain study. Open AIDS J. 7(1), 42–46 (2013)
Cline, R.J.W.: Consumer health information seeking on the internet: the state of the art. Health Educ. Res. 16(6), 671–692 (2001)
Ding, X., Liu, T., Duan, J., Nie, J.Y.: Mining user consumption intention from social media using domain adaptive convolutional neural network. In: The 29th AAAI Conference, pp. 2389–2395. AAAI Press (2015)
Fleiss, J.L., Cohen, J., Everitt, B.S.: Large sample standard errors of kappa and weighted kappa. Psychol. Bull. 72(5), 323–327 (1969)
Fox, S., Duggan, M.: Health online 2013. Technical report, PEW (2017). http://www.pewinternet.org/2013/01/15/health-online-2013/
Gelman, A.: Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27(15), 2865–2873 (2008)
Godea, A.K., Caragea, C., Bulgarov, F.A., Ramisetty-Mikler, S.: An analysis of Twitter data on E-cigarette sentiments and promotion. In: Holmes, J.H., Bellazzi, R., Sacchi, L., Peek, N. (eds.) AIME 2015. LNCS (LNAI), vol. 9105, pp. 205–215. Springer, Cham (2015). doi:10.1007/978-3-319-19551-3_27
Hemphill, L., Roback, A.J.: Tweet acts: how constituents lobby congress via Twitter. In: CSCW 2014, pp. 1200–1210. ACM, New York (2014)
Houghton, J., Siegel, M., Goldsmith, D.: Modeling the influence of narratives on collective behavior case study. In: International System Dynamics Conference (2013)
Kalitzkus, V.: Narrative-based medicine: potential, pitfalls, and practice. Perm. J. 13(1), 80 (2009)
Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: The 14th International Conference on WWW, pp. 342–351. ACM, New York (2005)
Murphy, J.: The role of clinical records in narrative medicine: a discourse of message. Perm. J. 20, 103 (2016)
Myslin, M., Zhu, S.H., Chapman, W., Conway, M.: Using Twitter to examine smoking behavior and perceptions of emerging tobacco products. Med. Internet Res. 15(8), e174 (2013)
O’Keefe, D., Jensen, J., Jakob, D.: The relative persuasiveness of gain-framed loss-framed messages for encouraging disease prevention behaviors. Health Commun. J. 12(7), 623–644 (2007)
Owoputi, O., Dyer, C., Gimpel, K., Schneider, N., Smith, N.: Improved part-of-speech tagging for online conversational text with word clusters. In: NAACL (2013)
Perrin, A., Duggan, M., Greenwood, S.: Social media update 2016. Technical report, PEW (2017). http://www.pewinternet.org/2016/11/11/social-media-update-2016/
Prieto, V.M., Matos, S., Alvarez, M., Cacheda, F., Oliveira, J.L.: Twitter: a good place to detect health conditions. PLOS ONE 9(1), 1–11 (2014)
Ridpath, J.R., Wiese, C.J., Greene, S.M.: Looking at research consent forms through a participant-centered lens. J. Health Promot. 23(6), 371–375 (2009)
Searle, J.R.: Speech Acts, vol. 1. Cambridge University Press, Cambridge (1969)
Vanderveken, D.: Meaning and Speech Acts. Cambridge University Press, Cambridge (1990)
Wang, J., Cong, G., Zhao, W.X., Li, X.: Mining user intents in Twitter. In: The 29th AAAI Conference, pp. 318–324. AAAI Press (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Epure, E.V., Deneckere, R., Salinesi, C. (2017). Analyzing Perceived Intentions of Public Health-Related Communication on Twitter. In: ten Teije, A., Popow, C., Holmes, J., Sacchi, L. (eds) Artificial Intelligence in Medicine. AIME 2017. Lecture Notes in Computer Science(), vol 10259. Springer, Cham. https://doi.org/10.1007/978-3-319-59758-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-59758-4_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59757-7
Online ISBN: 978-3-319-59758-4
eBook Packages: Computer ScienceComputer Science (R0)