Skip to main content

Skin Hair Removal in Dermoscopic Images Using Soft Color Morphology

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10259))

Included in the following conference series:

Abstract

Dermoscopic images are useful tools towards the diagnosis and classification of skin lesions. One of the first steps to automatically study them is the reduction of noise, which includes bubbles caused by the immersion fluid and skin hair. In this work we provide an effective hair removal algorithm for dermoscopic imagery employing soft color morphology operators able to cope with color images. Our hair removal filter is essentially composed of a morphological curvilinear object detector and a morphological-based inpainting algorithm. Our work is aimed at fulfilling two goals. First, to provide a successful yet efficient hair removal algorithm using the soft color morphology operators. Second, to compare it with other state-of-the-art algorithms and exhibit the good results of our approach, which maintains lesion’s features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Argenziano, G., Longo, C., Cameron, A., Cavicchini, S., et al.: Blue-black rule: a simple dermoscopic clue to recognize pigmented nodular melanoma. Br. J. Dermatol. 165(6), 1251–1255 (2011)

    Article  Google Scholar 

  2. Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  3. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners, vol. 221. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  4. Bibiloni, P., González-Hidalgo, M., Massanet, S.: Soft color morphology. In: Submitted to IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2017) (2017)

    Google Scholar 

  5. Informe de conclusiones. MELANOMA VISIÓN 360\({}^\circ \): Diálogos entre pacientes y profesionales. Madrid (2015). http://fundacionmasqueideas.org/documentos/. Accessed 20 July 2016

  6. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: A fuzzy filter for high-density salt and pepper noise removal. In: Bielza, C., Salmerón, A., Alonso-Betanzos, A., Hidalgo, J.I., Martínez, L., Troncoso, A., Corchado, E., Corchado, J.M. (eds.) CAEPIA 2013. LNCS, vol. 8109, pp. 70–79. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40643-0_8

    Chapter  Google Scholar 

  7. Kerre, E.E., Nachtegael, M.: Fuzzy Techniques in Image Processing. Studies in Fuzziness and Soft Computing, vol. 52. Physica, Heidelberg (2013)

    MATH  Google Scholar 

  8. Lee, T., Ng, V., Gallagher, R., Coldman, A., McLean, D.: Dullrazor®: a software approach to hair removal from images. Comput. Biol. Med. 27(6), 533–543 (1997)

    Article  Google Scholar 

  9. Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J.: PH 2 - a dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5437–5440. IEEE (2013)

    Google Scholar 

  10. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, Cambridge (1982)

    MATH  Google Scholar 

  11. Toossi, M.T.B., Pourreza, H.R., Zare, H., Sigari, M.H., et al.: An effective hair removal algorithm for dermoscopy images. Skin Res. Technol. 19(3), 230–235 (2013)

    Article  Google Scholar 

  12. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics GEMS IV, pp. 474–485. Academic Press Professional, Inc. (1994)

    Google Scholar 

Download references

Acknowledgments

The Spanish grants TIN 2016-75404-P AEI/FEDER, UE and TIN 2013-42795-P partially supported this work. P. Bibiloni also benefited from the fellowship FPI/1645/2014 of the Conselleria d’Educació, Cultura i Universitats of the Govern de les Illes Balears under an operational program co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Bibiloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bibiloni, P., González-Hidalgo, M., Massanet, S. (2017). Skin Hair Removal in Dermoscopic Images Using Soft Color Morphology. In: ten Teije, A., Popow, C., Holmes, J., Sacchi, L. (eds) Artificial Intelligence in Medicine. AIME 2017. Lecture Notes in Computer Science(), vol 10259. Springer, Cham. https://doi.org/10.1007/978-3-319-59758-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59758-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59757-7

  • Online ISBN: 978-3-319-59758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics