Skip to main content

Bayesian Gaussian Process Classification from Event-Related Brain Potentials in Alzheimer’s Disease

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2017)

Abstract

Event-related potentials (ERPs) have been shown to reflect neurodegenerative processes in Alzheimer’s disease (AD) and might qualify as non-invasive and cost-effective markers to facilitate the objectivization of AD assessment in daily clinical practice. Lately, the combination of multivariate pattern analysis (MVPA) and Gaussian process classification (GPC) has gained interest in the neuroscientific community. Here, we demonstrate how a MVPA-GPC approach can be applied to electrophysiological data. Furthermore, in order to account for the temporal information of ERPs, we develop a novel method that integrates interregional synchrony of ERP time signatures. By using real-life ERP recordings of a prospective AD cohort study (PRODEM), we empirically investigate the usefulness of the proposed framework to build neurophysiological markers for single subject classification tasks. GPC outperforms the probabilistic reference method in both tasks, with the highest AUC overall (0.802) being achieved using the new spatiotemporal method in the prediction of rapid cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Howe, A.S., Bani-Fatemi, A., De Luca, V.: The clinical utility of the auditory P300 latency subcomponent event-related potential in preclinical diagnosis of patients with mild cognitive impairment and Alzheimer’s disease. Brain Cogn. 86, 64–74 (2014)

    Article  Google Scholar 

  2. Howe, A.S.: Meta-analysis of the endogenous N200 latency event-related potential subcomponent in patients with Alzheimer’s disease and mild cognitive impairment. Clin. Neurophysiol. 125, 1145–1151 (2014)

    Article  Google Scholar 

  3. Olichney, J.M., Yang, J.C., Taylor, J., Kutas, M.: Cognitive event-related potentials: biomarkers of synaptic dysfunction across the stages of Alzheimer’s disease. J. Alzheimer’s Dis. 26(Suppl. 3), 215–228 (2011)

    Google Scholar 

  4. Challis, E., Hurley, P., Serra, L., Bozzali, M., Oliver, S., Cercignani, M.: Gaussian process classification of Alzheimer’s disease and mild cognitive impairment from resting-state fMRI. NeuroImage 112, 232–243 (2015)

    Article  Google Scholar 

  5. Hui, J.S., Wilson, R.S., Bennett, D.A., Bienias, J.L., Gilley, D.W., Evans, D.A.: Rate of cognitive decline and mortality in Alzheimer’s disease. Neurology 61, 1356–1361 (2003)

    Article  Google Scholar 

  6. Liu, C.C., Kanekiyo, T., Xu, H., Bu, G.: Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118 (2013)

    Article  Google Scholar 

  7. Rosengarten, B., Paulsen, S., Burr, O., Kaps, M.: Effect of ApoE ε4 allele on visual evoked potentials and resultant flow coupling in patients with Alzheimer. J. Geriatr. Psychiatry Neurol. 23, 165–170 (2010)

    Article  Google Scholar 

  8. Green, J., Levey, A.I.: Event-related potential changes in groups at increased risk for Alzheimer disease. Arch. Neurol. 56, 1398–1403 (1999)

    Article  Google Scholar 

  9. Lee, T.-W., Yu, Y.W.-Y., Hong, C.-J., Tsai, S.-J., Wu, H.-C., Chen, T.-J.: The influence of apolipoprotein E Epsilon4 polymorphism on qEEG profiles in healthy young females: a resting EEG study. Brain Topogr. 25, 431–442 (2012)

    Article  Google Scholar 

  10. Canuet, L., Tellado, I., Couceiro, V., Fraile, C., Fernandez-Novoa, L., Ishii, R., Takeda, M., Cacabelos, R.: Resting-state network disruption and APOE genotype in Alzheimer’s disease: a lagged functional connectivity study. PLoS ONE 7, e46289 (2012)

    Article  Google Scholar 

  11. Folstein, M.F., Folstein, S.E., McHugh, P.R.: “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975)

    Article  Google Scholar 

  12. Carcaillon, L., Pérès, K., Péré, J.J., Helmer, C., Orgogozo, J.M., Dartigues, J.F.: Fast cognitive decline at the time of dementia diagnosis: a major prognostic factor for survival in the community. Dement. Geriatr. Cogn. Disord. 23, 439–445 (2007)

    Article  Google Scholar 

  13. Puglielli, L., Tanzi, R.E., Kovacs, D.M.: Alzheimer’s disease: the cholesterol connection. Nat. Neurosci. 6, 345–351 (2003)

    Article  Google Scholar 

  14. Anderer, P., Semlitsch, H.V., Saletu, B., Barbanoj, M.J.: Artifact processing in topographic mapping of electroencephalographic activity in neuropsychopharmacology. Psychiatry Res.: Neuroimaging 45, 79–93 (1992)

    Article  Google Scholar 

  15. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004)

    Article  Google Scholar 

  16. Barachant, A., Congedo, M.: A Plug&Play P300 BCI Using Information Geometry. arXiv preprint arXiv:1409.0107 (2014)

  17. Congedo, M., Barachant, A., Andreev, A.: A New Generation of Brain-Computer Interface Based on Riemannian Geometry arXiv:1310.8115 (2013)

  18. Zeng, L.-L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., Zhou, Z., Li, Y., Hu, D.: Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 135, 1498–1507 (2012)

    Article  Google Scholar 

  19. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  20. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, New York (2007)

    MATH  Google Scholar 

  21. Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (GPML) toolbox. J. Mach. Learn. Res. 11, 3011–3015 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Chen, M.: Pattern Recognition and Machine Learning Toolbox. MATLAB Central File Exchange (2016)

    Google Scholar 

  23. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: Proceedings of the 2010 20th International Conference on Pattern Recognition, pp. 3121–3124. IEEE Computer Society (2010)

    Google Scholar 

  24. Hanley, J.A., McNeil, B.J.: A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148, 839–843 (1983)

    Article  Google Scholar 

  25. Stahl, D., Pickles, A., Elsabbagh, M., Johnson, M.H., The, B.T.: Novel machine learning methods for ERP analysis: a validation from research on infants at risk for autism. Dev. Neuropsychol. 37, 274–298 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

The PRODEM study has been supported by the Austrian Research Promotion Agency FFG, project no. 827462, including financial contributions from Dr. Grossegger and Drbal GmbH, Vienna, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Dorffner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fruehwirt, W. et al. (2017). Bayesian Gaussian Process Classification from Event-Related Brain Potentials in Alzheimer’s Disease. In: ten Teije, A., Popow, C., Holmes, J., Sacchi, L. (eds) Artificial Intelligence in Medicine. AIME 2017. Lecture Notes in Computer Science(), vol 10259. Springer, Cham. https://doi.org/10.1007/978-3-319-59758-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59758-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59757-7

  • Online ISBN: 978-3-319-59758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics