Skip to main content

Utilization of Redundant Communication Network Throughput for Non-critical Data Exchange in Networked Control Systems

  • Conference paper
  • First Online:
Computer Networks (CN 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 718))

Included in the following conference series:

  • 1048 Accesses

Abstract

Redundancy is the main method for achieving high reliability level in networked control systems NCSs. It is often applied in network interfaces in order to maintain operability of communication subsystems even when faults occur. In most cases, redundant communication buses realize exactly the same functionality as the initial non-redundant bus. That makes the system more reliable but the additional throughput of the redundant buses is not exploited even if the system condition would allow it. The idea of taking advantage of that throughput had made the authors to work on multi-network interface node which on the other hand maintain the high reliability of the communication subsystem, and on the other, makes it possible to manage the additional communication resources more efficiently, and therefore increases some parameters of the communication network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaj, P., Malinowski, A., Sauter, T., Valenzano, A.: Guest editorial: distributed data processing in industrial applications. IEEE Trans. Ind. Inform. 11(3), 737–740 (2015)

    Article  Google Scholar 

  2. Gaj, P., Jasperneite, J., Felser, M.: Computer communication within industrial distributed environment - survey. IEEE Trans. Ind. Inform. 9(1), 182–189 (2013)

    Article  Google Scholar 

  3. Birkholz, H., Sieverdingbeck, I.: Link-failure assessment in redundant ICS networks supported by the interconnected-asset ontology. In: 2014 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR), pp. 1–6, May 2014

    Google Scholar 

  4. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Applications. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  5. Sauter, T.: The three generations of field-level networks-evolution and compatibility issues. IEEE Trans. Ind. Electron. 57(11), 3585–3595 (2010)

    Article  Google Scholar 

  6. Flak, J., Gaj, P., Tokarz, K., Wideł, S., Ziebinski, A.: Remote monitoring of geological activity of inclined regions - the concept. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) Computer Networks. Communications in Computer and Information Science, vol. 39, pp. 292–301. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Popovic, M., Mohiuddin, M., Tomozei, D.C., Boudec, J.Y.L.: iPRP: parallel redundancy protocol for IP networks. In: 2015 IEEE World Conference on Factory Communication Systems (WFCS), pp. 1–4, May 2015

    Google Scholar 

  8. Yu, X., Jiang, J.: Hybrid fault-tolerant flight control system design against partial actuator failures. IEEE Trans. Control Syst. Technol. 20(4), 871–886 (2012)

    Article  MathSciNet  Google Scholar 

  9. Kwiecień, A., Stój, J.: The cost of redundancy in distributed real-time systems in steady state. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) Computer Networks. Communications in Computer and Information Science, vol. 79, pp. 106–120. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. International Electrotechnical Commission: IEC 62439-2: Industrial communication networks: High availability automation networks - part 2: Media redundancy protocol

    Google Scholar 

  11. Zuloaga, A., Astarloa, A., Jiménez, J., Lázaro, J., Araujo, J.A.: Cost-effective redundancy for ethernet train communications using HSR. In: 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1117–1122, June 2014

    Google Scholar 

  12. International Electrotechnical Commission: IEC 62439–3 (2012): “industrial communication networks: High availability automation networks” - part 3: Parallel redundancy protocol (PRP) and high availability seamless redundancy (HSR)

    Google Scholar 

  13. Giorgetti, A., Cugini, F., Paolucci, F., Valcarenghi, L., Pistone, A., Castoldi, P.: Performance analysis of media redundancy protocol (MRP). IEEE Trans. Ind. Inform. 9(1), 218–227 (2013)

    Article  Google Scholar 

  14. Kirrmann, H., Weber, K., Kleineberg, O., Weibel, H.: HSR: zero recovery time and low-cost redundancy for industrial ethernet (high availability seamless redundancy, IEC 62439–3). In: 2009 IEEE Conference on Emerging Technologies Factory Automation, pp. 1–4, September 2009

    Google Scholar 

  15. Rentschler, M., Heine, H.: The parallel redundancy protocol for industrial IP networks. In: 2013 IEEE International Conference on Industrial Technology (ICIT), pp. 1404–1409, February 2013

    Google Scholar 

  16. Hoga, C.: Seamless communication redundancy of IEC 62439. In: 2011 International Conference on Advanced Power System Automation and Protection, vol. 1, pp. 489–494, October 2011

    Google Scholar 

  17. Nsaif, S.A., Rhee, J.M.: Improvement of high-availability seamless redundancy (HSR) traffic performance. In: 2012 14th International Conference on Advanced Communication Technology (ICACT), pp. 814–819, February 2012

    Google Scholar 

  18. Nsaif, S.A., Kim, S., Rhee, J.M.: Quick removing (QR) approach using cut-through switching mode. In: 2016 18th International Conference on Advanced Communication Technology (ICACT), pp. 170–147, January 2016

    Google Scholar 

  19. Saadi, I.M.A.: Dynamic message transmission scheduling using can protocol. Int. J. Sci. Technol. Res. 2(9), 158–162 (2013)

    Google Scholar 

  20. Wey, C.L., Hsu, C.H., Chang, K.C., Jui, P.C.: Enhancement of controller area network (CAN) bus arbitration mechanism. In: 2013 International Conference on Connected Vehicles and Expo (ICCVE), pp. 898–902, December 2013

    Google Scholar 

  21. Kwiecień, A., Kwiecień, B., Maćkowski, M.: Algorithms for transmission failure detection in a communication system with two buses. In: Gaj, P., Kwiecień, A., Stera, P. (eds.) Computer Networks. Communications in Computer and Information Science, vol. 608. Springer International Publishing, Cham (2016)

    Google Scholar 

  22. Kwiecień, A., Kwiecień, B., Maćkowski, M.: A failure influence on parameters of real-time system with two buses. Computer Networks. Communications in Computer and Information Science, vol. 608. Springer International Publishing, Cham (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Stój .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kwiecień, A., Maćkowski, M., Stój, J., Rzońca, D., Sidzina, M. (2017). Utilization of Redundant Communication Network Throughput for Non-critical Data Exchange in Networked Control Systems. In: Gaj, P., Kwiecień, A., Sawicki, M. (eds) Computer Networks. CN 2017. Communications in Computer and Information Science, vol 718. Springer, Cham. https://doi.org/10.1007/978-3-319-59767-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59767-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59766-9

  • Online ISBN: 978-3-319-59767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics