Skip to main content

Quantum Direct Communication Wiretapping

  • Conference paper
  • First Online:
Computer Networks (CN 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 718))

Included in the following conference series:

  • 1031 Accesses

Abstract

The analyses of the ping-pong communication paradigm anticipated possibility to undetectably wiretap some variants of quantum direct communication. The only proposed so far instantiation of attacks of this type is formulated for the qubit based version of the protocol and it implicitly assumes the existence of losses. The essential features of undetectable attack transformations are identified in the study and the new generic eavesdropping scheme is proposed. The scheme does not refer to the properties of the vacuum state, so it is fully consistent with the absence of losses assumption. It is formulated for the space of any dimension and it can be used to design the family of circuits that enable undetectable eavesdropping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  Google Scholar 

  2. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  Google Scholar 

  3. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  Google Scholar 

  4. Ostermeyer, M., Walenta, N.: On the implementation of a deterministic secure coding protocol using polarization entangled photons. Opt. Commun. 281(17), 4540–4544 (2008)

    Article  Google Scholar 

  5. Boström, K., Felbinger, T.: On the security of the ping-pong protocol. Phys. Lett. A 372(22), 3953–3956 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cerè, A., Lucamarini, M., Di Giuseppe, G., Tombesi, P.: Experimental test of two-way quantum key distribution in the presence of controlled noise. Phys. Rev. Lett. 96, 200501 (2006)

    Article  Google Scholar 

  7. Chen, H., Zhou, Z.Y., Zangana, A.J.J., Yin, Z.Q., Wu, J., Han, Y.G., Wang, S., Li, H.W., He, D.Y., Tawfeeq, S.K., Shi, B.S., Guo, G.C., Chen, W., Han, Z.F.: Experimental demonstration on the deterministic quantum key distribution based on entangled photons. Sci. Rep. 6, 20962 (2016)

    Article  Google Scholar 

  8. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253(13), 15–20 (2005)

    Article  Google Scholar 

  9. Vasiliu, E.V.: Non-coherent attack on the ping-pong protocol with completely entangled pairs of qutrits. Quant. Inf. Process. 10(2), 189–202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zawadzki, P.: Security of Ping-Pong protocol based on pairs of completely entangled qudits. Quant. Inf. Process. 11(6), 1419–1430 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zawadzki, P., Puchała, Z., Miszczak, J.: Increasing the security of the ping-pong protocol by using many mutually unbiased bases. Quant. Inf. Process. 12(1), 569–575 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cai, Q., Li, B.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69, 054301 (2004)

    Article  Google Scholar 

  13. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  Google Scholar 

  14. Pavičić, M.: In quantum direct communication an undetectable eavesdropper can always tell \(\psi {}\) from \(\phi {}\) Bell states in the message mode. Phys. Rev. A 87, 042326 (2013)

    Article  Google Scholar 

  15. Zawadzki, P.: An improved control mode for the ping-pong protocol operation in imperfect quantum channels. Quant. Inf. Process. 14(7), 2589–2598 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, B., Shi, W.X., Wang, J., Tang, C.J.: Quantum direct communication protocol strengthening against Pavičić’s attack. Int. J. Quant. Inf. 13(07), 1550052 (2015)

    Article  MATH  Google Scholar 

  17. Brandt, H.E.: Entangled eavesdropping in quantum key distribution. J. Mod. Opt. 53(16–17), 2251–2257 (2006)

    Article  MATH  Google Scholar 

  18. Shapiro, J.H.: Performance analysis for Brandts conclusive entangling probe. Quant. Inf. Process. 5(1), 11–24 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Author acknowledges support by the Ministry of Science and Higher Education funding for statutory activities and Rector of Silesian University of Technology grant number 02/030/RGJ17/0025 in the area of research and development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Zawadzki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zawadzki, P. (2017). Quantum Direct Communication Wiretapping. In: Gaj, P., Kwiecień, A., Sawicki, M. (eds) Computer Networks. CN 2017. Communications in Computer and Information Science, vol 718. Springer, Cham. https://doi.org/10.1007/978-3-319-59767-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59767-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59766-9

  • Online ISBN: 978-3-319-59767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics