Abstract
In this paper, a hierarchical hardware/software architecture for controlling hand prostheses is presented. It is based on both the task planning paradigm and the central nervous system (CNS) so it can be considered as a smart tool which helps people to develop tasks. A hand prostheses prototype, with force and position sensors, controlled by myoelectric commands is used for the validation of the hierarchical control between the user and the prosthesis. The proposed hierarchical control has been validated by people without disability through grasp tasks used in daily life.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kapandji, I.A.: Physiology of the Joints. The Upper Limb. Churchill Livingstone, New York (1982)
Butterfass, J., Grebenstein, M., Liu, H., Hirzinger, G.: DLR-Hand II: next generation of a dextrous robot hand. In: IEEE International Conference on Robotics and Automation, Seoul, pp. 109–114 (2001)
Dalley, S.A., Wiste, T.E., Withrow, T.J., Goldfarb, M.: Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation. IEEE/ASME Trans. Mechatron. 14, 699–706 (2009)
Capriani, C., Controzzi, M., Carrozza, M.C.: Mechanical design of a transradial cybernetic hand. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, pp. 576–581 (2008)
Santello, M., Soechting, J.F.: Force synergies for multifingered grasping. Exp. Brain Res. 133, 457–467 (2000)
Bernstein, N.A.: The problem of interrelaton between coordination and localization. Arch. Biol. Sci. 38, 1–35 (1935)
Zecca, M., Micera, S., Carrozza, M.C., Dario, P.: Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit. Rev. Biomed. Eng. 30, 459–485 (2002)
Sensor Hand Speed w/Flex. https://professionals.ottobockus.com/c/Sensor-Hand-Speed-w-Flex/p/8E41~58-R7%201~24-F
Touch bionics. http://www.touchbionics.com/products/active-prostheses/i-limb-ultra
Steeper. http://es.bebionic.com/the_hand
Kim, K., Choi, H., Moon, C., Mun, C.: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 11, 740–745 (2011)
Oskoei, M., Hu, H.: Myoelectric control systems—A survey. Biomed. Signal Process. Control 2, 275–294 (2007)
Farina, D., Yoshida, K., Stieglitz, T., Koch, K.P.: Multichannel thin-film electrode for intramuscular electromyographic recordings. J. Appl. Physiol. 104, 821–827 (2008)
Kuiken, T.A., Dumanian, G.A., Lipschutz, R.D., Miller, L.A., Stubblefield, K.A.: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 28, 245–253 (2004)
Dhillon, G.S., Horch, K.W.: Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 468–472 (2005)
Pons, J.L., Rocon, E., Ceres, R., Saro, B., Levin, S., Van Moorleghem, W.: The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Auton. Robots 16, 143–163 (2004)
Cipriani, C., Zaccone, F., Stellin, G., Beccai, L., Cappiello, G., Carrozza, M.C., Dario, P.: Closed-loop controller for a bio-inspired multi-fingered underactuated prosthesis. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2111–2116 (2006)
Cipriani, C., Controzzi, M., Carrozza, M.C.: The SmartHand transradial prosthesis. J. NeuroEng. Rehabil. 8, 1–13 (2011)
Burghart, C., Mikut, R., Stiefelhagen, R., Asfour, T.: A cognitive architecture for a humanoid robot: a first approach. In: International Conference on Humanoid Robots, pp. 357–362 (2005)
Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by imitation. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 358, 537–547 (2003)
Quinayás, C., Gaviria, C.: Sistema de identificación de intención de movimiento para el control mioelctrico de una prótesis de mano robótica. Ing. Univ. 19, 27–50 (2015)
Rijpkema, H., Girard, M.: Computer animation of knowledge- based human grasping. In: 18th Annual Conference on Computer Graphics and Interactive Techniques, pp. 339–348 (1991)
Cobos, S., Ferre, M., Sanchez-Uran, M.A., Ortego, J., Pena, C.: Efficient human hand kinematics for manipulation tasks. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2246–2251 (2008)
Arimoto, S., Tahara, K., Yamaguchi, M., Nguyen, P.T.A., Han, H.Y.: Principles of superposition for controlling pinch motions by means of robot fingers with soft tips. Robotica 19, 21–28 (2001)
Quinayás, C., Anãsco, M., Vivas, O., Gaviria, C.: Disenõ y construcción de la prótesis robótica de mano UC-1. Ing. Univ. 14, 223–237 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Quinayás, C., Ruiz, A., Torres, L., Gaviria, C. (2017). Hierarchical-Architecture Oriented to Multi-task Planning for Prosthetic Hands Controlling. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science(), vol 10338. Springer, Cham. https://doi.org/10.1007/978-3-319-59773-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-59773-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59772-0
Online ISBN: 978-3-319-59773-7
eBook Packages: Computer ScienceComputer Science (R0)