Skip to main content

Hierarchical-Architecture Oriented to Multi-task Planning for Prosthetic Hands Controlling

  • Conference paper
  • First Online:
Biomedical Applications Based on Natural and Artificial Computing (IWINAC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10338))

  • 1944 Accesses

Abstract

In this paper, a hierarchical hardware/software architecture for controlling hand prostheses is presented. It is based on both the task planning paradigm and the central nervous system (CNS) so it can be considered as a smart tool which helps people to develop tasks. A hand prostheses prototype, with force and position sensors, controlled by myoelectric commands is used for the validation of the hierarchical control between the user and the prosthesis. The proposed hierarchical control has been validated by people without disability through grasp tasks used in daily life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapandji, I.A.: Physiology of the Joints. The Upper Limb. Churchill Livingstone, New York (1982)

    Google Scholar 

  2. Butterfass, J., Grebenstein, M., Liu, H., Hirzinger, G.: DLR-Hand II: next generation of a dextrous robot hand. In: IEEE International Conference on Robotics and Automation, Seoul, pp. 109–114 (2001)

    Google Scholar 

  3. Dalley, S.A., Wiste, T.E., Withrow, T.J., Goldfarb, M.: Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation. IEEE/ASME Trans. Mechatron. 14, 699–706 (2009)

    Article  Google Scholar 

  4. Capriani, C., Controzzi, M., Carrozza, M.C.: Mechanical design of a transradial cybernetic hand. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, pp. 576–581 (2008)

    Google Scholar 

  5. Santello, M., Soechting, J.F.: Force synergies for multifingered grasping. Exp. Brain Res. 133, 457–467 (2000)

    Article  Google Scholar 

  6. Bernstein, N.A.: The problem of interrelaton between coordination and localization. Arch. Biol. Sci. 38, 1–35 (1935)

    Google Scholar 

  7. Zecca, M., Micera, S., Carrozza, M.C., Dario, P.: Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit. Rev. Biomed. Eng. 30, 459–485 (2002)

    Article  Google Scholar 

  8. Sensor Hand Speed w/Flex. https://professionals.ottobockus.com/c/Sensor-Hand-Speed-w-Flex/p/8E41~58-R7%201~24-F

  9. Touch bionics. http://www.touchbionics.com/products/active-prostheses/i-limb-ultra

  10. Steeper. http://es.bebionic.com/the_hand

  11. Kim, K., Choi, H., Moon, C., Mun, C.: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 11, 740–745 (2011)

    Article  Google Scholar 

  12. Oskoei, M., Hu, H.: Myoelectric control systems—A survey. Biomed. Signal Process. Control 2, 275–294 (2007)

    Article  Google Scholar 

  13. Farina, D., Yoshida, K., Stieglitz, T., Koch, K.P.: Multichannel thin-film electrode for intramuscular electromyographic recordings. J. Appl. Physiol. 104, 821–827 (2008)

    Article  Google Scholar 

  14. Kuiken, T.A., Dumanian, G.A., Lipschutz, R.D., Miller, L.A., Stubblefield, K.A.: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 28, 245–253 (2004)

    Google Scholar 

  15. Dhillon, G.S., Horch, K.W.: Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 468–472 (2005)

    Article  Google Scholar 

  16. Pons, J.L., Rocon, E., Ceres, R., Saro, B., Levin, S., Van Moorleghem, W.: The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Auton. Robots 16, 143–163 (2004)

    Article  Google Scholar 

  17. Cipriani, C., Zaccone, F., Stellin, G., Beccai, L., Cappiello, G., Carrozza, M.C., Dario, P.: Closed-loop controller for a bio-inspired multi-fingered underactuated prosthesis. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2111–2116 (2006)

    Google Scholar 

  18. Cipriani, C., Controzzi, M., Carrozza, M.C.: The SmartHand transradial prosthesis. J. NeuroEng. Rehabil. 8, 1–13 (2011)

    Article  Google Scholar 

  19. Burghart, C., Mikut, R., Stiefelhagen, R., Asfour, T.: A cognitive architecture for a humanoid robot: a first approach. In: International Conference on Humanoid Robots, pp. 357–362 (2005)

    Google Scholar 

  20. Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by imitation. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 358, 537–547 (2003)

    Article  Google Scholar 

  21. Quinayás, C., Gaviria, C.: Sistema de identificación de intención de movimiento para el control mioelctrico de una prótesis de mano robótica. Ing. Univ. 19, 27–50 (2015)

    Google Scholar 

  22. Rijpkema, H., Girard, M.: Computer animation of knowledge- based human grasping. In: 18th Annual Conference on Computer Graphics and Interactive Techniques, pp. 339–348 (1991)

    Google Scholar 

  23. Cobos, S., Ferre, M., Sanchez-Uran, M.A., Ortego, J., Pena, C.: Efficient human hand kinematics for manipulation tasks. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2246–2251 (2008)

    Google Scholar 

  24. Arimoto, S., Tahara, K., Yamaguchi, M., Nguyen, P.T.A., Han, H.Y.: Principles of superposition for controlling pinch motions by means of robot fingers with soft tips. Robotica 19, 21–28 (2001)

    Article  Google Scholar 

  25. Quinayás, C., Anãsco, M., Vivas, O., Gaviria, C.: Disenõ y construcción de la prótesis robótica de mano UC-1. Ing. Univ. 14, 223–237 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Quinayás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Quinayás, C., Ruiz, A., Torres, L., Gaviria, C. (2017). Hierarchical-Architecture Oriented to Multi-task Planning for Prosthetic Hands Controlling. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science(), vol 10338. Springer, Cham. https://doi.org/10.1007/978-3-319-59773-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59773-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59772-0

  • Online ISBN: 978-3-319-59773-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics