Abstract
Brain connectivity analysis has emerged as a tool to associate activity generated in diverse brain areas, making possible the integration of functionally specialized brain regions in networks. However, estimation of the areas with relevant activity is well influenced by the applied brain mapping methods. This paper carries out the comparison of three reconstruction principles that differ in the way the prior covariance is adjusted, including its generalization through multiple and sparse spatial priors. To cluster the locations with significant brain activity (regions of interest), we select the most powerful areas, for which the functional connectivity is measured by the coherence and Kullback-Liebler divergence. From the obtained results on simulated and real-world EEG data, both measures show that the mapping method that includes Multiple Sparse Priors allows improving the connectivity accuracy regardless the used measure for all tested values of added noise.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belardinelli, P., Ortiz, E., Barnes, G., Noppeney, U., Preissl, H.: Source reconstruction accuracy of MEG and EEG Bayesian inversion approaches. PLoS ONE 7(12), 51985 (2012)
Brier, M.R., Thomas, J.B., Fagan, A.M., Hassenstab, J., Holtzman, D.M., Benzinger, T.L., Morris, J.C., Ances, B.M.: Functional connectivity and graph theory in preclinical Alzheimer’s disease. Neurobiol. Aging 35(4), 757–768 (2014)
Brookes, M.J., O’neill, G.C., Hall, E.L., Woolrich, M.W., Baker, A., Palazzo Corner, S., Robson, S.E., Morris, P.G., Barnes, G.R.: Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity. NeuroImage 91, 282–299 (2014)
Cho, J.-H., Vorwerk, J., Wolters, C.H., Knösche, T.R.: Influence of the head model on EEG and MEG source connectivity analyses. Neuroimage 110, 60–77 (2015)
Costa, F., Batatia, H., Oberlin, T., D’Giano, C., Tourneret, J.-Y.: Bayesian EEG source localization using a structured sparsity prior. NeuroImage 144, 142–152 (2017)
Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., Henson, R., Flandin, G., Mattout, J.: Multiple sparse priors for the M/EEG inverse problem. NeuroImage 39(3), 1104–1120 (2008)
Grech, R., Cassar, T., Muscat, J., Camilleri, K.P., Fabri, S.G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the inverse problem in EEG source analysis. J. Neuroeng. Rehabil. 5(1), 25 (2008)
Greenblatt, R.E., Pflieger, M.E., Ossadtchi, A.E.: Connectivity measures applied to human brain electrophysiological data. J. Neurosci. Methods 207(1), 1–16 (2012)
Hassan, M., Dufor, O., Merlet, I., Berrou, C., Wendling, F.: EEG source connectivity analysis: from dense array recordings to brain networks. PLoS One 9(8), 105041 (2014)
Henson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J.: A parametric empirical Bayesian framework for the EEG/MEG inverse problem: generative models for multi-subject and multi-modal integration. Front. Hum. Neurosci. 5, 76 (2011)
Nummenmaa, A., Auranen, T., Hämäläinen, M.S., Jääskeläinen, I.P., Lampinen, J., Sams, M., Vehtari, A.: Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods. NeuroImage 35(2), 669–685 (2007)
Padilla-Buritica, J.I., Martinez-Vargas, J.D., Castellanos-Dominguez, G.: Emotion discrimination using spatially compact regions of interest extracted from imaging EEG activity. Front. Comput. Neurosci. 10 (2016)
Pascual-Marqui, R.D., Esslen, M., Kochi, K., Lehmann, D., et al.: Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find. Exp. Clin. Pharmacol. 24(Suppl C), 91–95 (2002)
Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)
Schoffelen, J.-M., Gross, J.: Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30(6), 1857–1865 (2009)
Sheline, Y.I., Raichle, M.E.: Resting state functional connectivity in preclinical Alzheimer’s disease. Biol. Psychiatry 74(5), 340–347 (2013)
Acknowledgments
This work was supported by the research project 11974454838 founded by COLCIENCIAS. J.I. Padilla-Buriticá is founded by Programa nacional de becas de doctorado, convocatoria 647 (2014).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Padilla-Buriticá, J.I., Martínez-Vargas, J.D., Suárez-Ruiz, A., Ferrandez, J.M., Castellanos-Dominguez, G. (2017). Spatial Resolution of EEG Source Reconstruction in Assessing Brain Connectivity Analysis. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science(), vol 10338. Springer, Cham. https://doi.org/10.1007/978-3-319-59773-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-59773-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59772-0
Online ISBN: 978-3-319-59773-7
eBook Packages: Computer ScienceComputer Science (R0)