Abstract
This work considers the problem of constructing efficient MDS matrices over the field \(\mathbb {F}_{2^m}\). Efficiency is measured by the metric XOR count which was introduced by Khoo et al. in CHES 2014. Recently Sarkar and Syed (ToSC Vol. 1, 2016) have shown the existence of \(4\times 4\) Toeplitz MDS matrices with optimal XOR counts. In this paper, we present some characterizations of Toeplitz matrices in light of MDS property. Our study leads to improving the known bounds of XOR counts of \(8\times 8\) MDS matrices by obtaining Toeplitz MDS matrices with lower XOR counts over \(\mathbb {F}_{2^4}\) and \(\mathbb {F}_{2^8}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We do not consider full \(\mathbb {F}_{2^8}\) as this leads to a huge search space which will be difficult to complete.
References
Babbage, S., Dodd, M.: The stream cipher MICKEY 2.0 (2006). http://www.ecrypt.eu.org/stream/mickeypf.html
Barreto, P.S.L.M., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind: a new cryptographic hash function. Des. Codes Crypt. 56(2–3), 141–162 (2010)
Barreto, P.S.L.M., Rijmen, V.: Whirlpool. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security, 2nd edn, pp. 1384–1385. Springer, New York (2011)
Beierle, C., Kranz, T., Leander, G.: Lightweight multiplication in \(GF(2^n)\) with applications to MDS matrices. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 625–653. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4_23
Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2_31
Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4_14
Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained environments. Int. J. Wire. Mob. Comput. 2(1), 86–93 (2007)
Junod, P., Vaudenay, S.: Perfect diffusion primitives for block ciphers. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 84–99. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30564-4_6
Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: searching for hardware-optimal SPN structures and components with a fair comparison. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 433–450. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3_24
Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS matrices. In: Peyrin [13], pp. 121–139
Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Peyrin [13], pp. 101–120
Macwilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes (North-Holland Mathematical Library). North Holland, January 1983
Peyrin, T. (ed.): FSE 2016. LNCS, vol. 9783. Springer, Heidelberg (2016)
Sarkar, S., Sim, S.M.: A deeper understanding of the XOR count distribution in the context of lightweight cryptography. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 167–182. Springer, Cham (2016). doi:10.1007/978-3-319-31517-1_9
Sarkar, S., Syed, H.: Lightweight diffusion layer: importance of Toeplitz matrices. IACR Trans. Symmetric Cryptol. 2016(1), 95–113 (2016)
Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74619-5_12
Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48116-5_23
Tian, Y., Chen, G., Li, J.: On the Design of Trivium. Cryptology ePrint Archive, Report 2009/431 (2009). http://eprint.iacr.org/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
A Proofs and Example
Proof of Lemma 1
Proof
Consider the following \(d\times d\) submatrix A.
Applying (4), we get the form of this matrix as
If \(j_0-i_0 \ge 0\), then A is equal to the following submatrix whose first row belongs to the first row of the main matrix T:
On the other hand, if \(j_0-i_0 < 0\), then (20) is equal to the following matrix whose first column belongs to the first column of the main matrix T:
\(\square \)
Proof of Lemma 2
Proof
As \(i + j \le n-1\), in the \((i+j)\)-th row (row and column number starts from 0), \(a_{-j}\) appears in the i-th column, i.e., both \(a_i\) and \(a_{-j}\) are in the same column. Again in the \((i+j)\)-th row, \(a_{-i}\) appears in the j-th column, i.e., \(a_{-i}\) and \(a_{j}\) are in the same column. Therefore, the \(2 \times 2\) submatrix of T formed by the \(0, (i+j)\)-th row and i, j-th column is \(\left[ \begin{array}{cc} a_i &{} a_j\\ a_{-j} &{} a_{-i} \end{array}\right] \). The determinant of this is \(a_i a_{-i} + a_j a_{-j} = 0\) by hypothesis. \(\square \)
Proof of Lemma 3
Proof
It is easy to check that given an MDS matrix \(M = [m_{i,j}]_{n\times n}\) and \(\beta \in \mathbb {F}_{2^m}^*\) the matrix \(\beta M = [\beta \, m_{i,j}]_{n\times n}\) is also MDS. From [8] it is known that in a \(8 \times 8\) MDS matrix, 1 can occur at most 24 times. So if there is an element \(\beta \) in an \(8 \times 8\) MDS matrix V that occurs more than 24 times, then \(\beta ^{-1} V\) contains 1 more than 24 times, a contradiction. \(\square \)
Example 2
Suppose \(\alpha \) is a primitive root of \(X^4+X+1 = 0\) that generates \(GF(2^4)\). Consider
Then the following is a Cauchy-Toeplitz matrix
B Figures and Tables
If the value of \(a_i\) satisfies (17), all the subtrees rooted at this \(a_i\) and its subsequent siblings are pruned.
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Sarkar, S., Syed, H. (2017). Analysis of Toeplitz MDS Matrices. In: Pieprzyk, J., Suriadi, S. (eds) Information Security and Privacy. ACISP 2017. Lecture Notes in Computer Science(), vol 10343. Springer, Cham. https://doi.org/10.1007/978-3-319-59870-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-59870-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59869-7
Online ISBN: 978-3-319-59870-3
eBook Packages: Computer ScienceComputer Science (R0)