Abstract
This paper presents new differential addition (i.e., the addition of two points with the known difference) and doubling formulas, as the core step in Montgomery scalar multiplication, for twisted Edwards curves. The formulas are provided with cost of \(5\mathbf {M}+4\mathbf {S}+1\mathbf {D}\), \(3\mathbf {M}+7\mathbf {S}+1\mathbf {D}\) and \(3\mathbf {M}+6\mathbf {S}+3\mathbf {D}\) when the given difference point is in affine form. Here, \(\mathbf {M}, \mathbf {S}, \mathbf {D}\) denote the costs of a field multiplication, a field squaring and a field multiplication by a constant, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68164-9_26
Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76900-2_3
Bernstein, D.J., Lange, T., Rezaeian Farashahi, R.: Binary edwards curves. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 244–265. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3_16
Bernstein, D., Lange, T.: A complete set of addition laws for incomplete Edwards curves. J. Number Theory 131, 858–872 (2011)
Bernstein, D., Lange, T.: Explicit-formulas database. http://www.hyperelliptic.org/EFD/
Castryck, W., Galbraith, S., Farashahi, R.: Efficient arithmetic on elliptic curves using a mixed Edwards Montgomery representation. https://eprint.iacr.org/2008/218.pdf
Edwards, H.M.: A normal form for elliptic curves. Bull. Amer. Math. Soc. 44, 393–422 (2007)
Rezaeian Farashahi, R., Hosseini, S.G.: Differential addition on binary elliptic curves. In: Duquesne, S., Petkova-Nikova, S. (eds.) WAIFI 2016. LNCS, vol. 10064, pp. 21–35. Springer, Cham (2016). doi:10.1007/978-3-319-55227-9_2
Gaudry P. and Lubicz D.: The arithmetic of characteristic 2 Kummer surface. Finite Fields Appl. 15, 246–260 (2009)
Gu, H., Gu, D., Xie, W.: Differential addition on Jacobi quartic curves Conference: ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT 2012)
Hamburg, M.: Decaf: eliminating cofactors through point compression. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 705–723. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_34
Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted edwards curves revisited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89255-7_20
Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48(177), 203–209 (1987)
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi:10.1007/3-540-39799-X_31
Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Comp. 48(177), 243–264 (1987)
Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Berlin (1995)
Washington, D.C.: Elliptic Curves: Number Theory and Cryptography, 2nd edn. CRC Press, Boca Raton (2008)
Acknowledgment
The authors would like to thank anonymous reviewers for their useful comments. This research was in part supported by a grant from IPM (No. 95050416).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Farashahi, R.R., Hosseini, S.G. (2017). Differential Addition on Twisted Edwards Curves. In: Pieprzyk, J., Suriadi, S. (eds) Information Security and Privacy. ACISP 2017. Lecture Notes in Computer Science(), vol 10343. Springer, Cham. https://doi.org/10.1007/978-3-319-59870-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-59870-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59869-7
Online ISBN: 978-3-319-59870-3
eBook Packages: Computer ScienceComputer Science (R0)