Skip to main content

FFFuzzer: Filter Your Fuzz to Get Accuracy, Efficiency and Schedulability

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10343))

Included in the following conference series:

  • 1267 Accesses

Abstract

We present a new black-box mutational fuzzing technology and the corresponding tool which named FFFuzzer to improve the efficiency of fuzzing towards serveral given suspicious vulnerable code blocks.

Our main intuition is by adjusting dynamic taint tracing and doing constraint verification, we can build 2 quite light filters to sieve the mutated input, which is the result of fuzzing’s mutation stage, thus FFFuzzer can runs under fuzzing level speed while enjoys better accuracy and schedulability. We collect 14 CVEs that can get enough details to generate a POC from the PDF rendering library poppler’s recent 10 years bug list as our benchmark to fully analyzes FFFuzzer’s real world challenges. And we build 2 mathematical models to do performance analysis. Analysis and experiments show although FFFuzzer has limitations on fuzzing metadata-related vulnerabilities and its efficiency also depends on seed file like traditional fuzzer, FFFuzzer has much powerful parallellism and it can run an order of magnitude faster than traditional fuzzer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    BAP’s intermediate language.

  2. 2.

    Bap.Std.Bitvector.extract_exn.

  3. 3.

    OCaml source code filename extension, like .cpp.

  4. 4.

    Shifted means X’s value starts from 1 not 0, see details in https://en.wikipedia.org/wiki/Geometric_distribution.

References

  1. Bao, T., Zheng, Y., Lin, Z., Zhang, X., Xu, D.: Strict control dependence and its effect on dynamic information flow analyses. In: Proceedings of the 19th International Symposium on Software Testing and Analysis, ISSTA 2010, pp. 13–24. ACM, New York (2010). http://doi.acm.org/10.1145/1831708.1831711

  2. Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P., Song, D., Yin, H.: Bitscope: automatically dissecting malicious binaries (2007)

    Google Scholar 

  3. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: a binary analysis platform. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 463–469. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_37

    Chapter  Google Scholar 

  4. Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: automatic extraction of protocol message format using dynamic binary analysis. In: ACM Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA, pp. 317–329, October 2007

    Google Scholar 

  5. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation of high-coverage tests for complex systems programs. In: Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation, OSDI 2008, pp. 209–224. USENIX Association, Berkeley (2008). http://dl.acm.org/citation.cfm?id=1855741.1855756

  6. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automatically generating inputs of death. Acm Trans. Inform. Syst. Secur. 12(2), 1–38 (2008)

    Article  Google Scholar 

  7. CERT/CC: Bff. https://www.cert.org/vulnerability-analysis/index.cfm, basic Fuzzing Framework

  8. Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: 2015 IEEE Symposium on Security and Privacy, pp. 725–741, May 2015

    Google Scholar 

  9. Eddington, M.: Peach fuzzer. http://www.peachfuzzer.com, grammar based fuzzer

  10. feseal: Pin tracer - a tracer based on pin: Intels dynamic binary instrumentation engine (2016). https://github.com/BinaryAnalysisPlatform/bap-pintraces

  11. Freedesktop: Pdf rendering library. https://poppler.freedesktop.org/

  12. Ganesh, V., Leek, T., Rinard, M.: Taint-based directed whitebox fuzzing. In: Proceedings of the 31st International Conference on Software Engineering, ICSE 2009, pp. 474–484. IEEE Computer Society, Washington, DC (2009). http://dx.doi.org/10.1109/ICSE.2009.5070546

  13. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. SIGPLAN Not. 40(6), 213–223 (2005). http://doi.acm.org/10.1145/1064978.1065036

  14. Godefroid, P., Levin, M.Y., Molnar, D.: Sage: whitebox fuzzing for security testing. Commun. ACM 55(3), 40–44 (2012). http://doi.acm.org/10.1145/2093548.2093564

  15. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for overflows: a guided fuzzer to find buffer boundary violations. In: Usenix Conference on Security, pp. 49–64 (2013)

    Google Scholar 

  16. Hoger, T.: Array indexing error in xpdf. https://bugzilla.redhat.com/show_bug.cgi?id=638960, bug track in bugzilla

  17. Householder, A.: Well theres your problem: Isolating the crash-inducing bits in a fuzzed file. Technical report CMU/SEI-2012-TN-018, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2012). http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=28043

  18. Kang, M.G., Mccamant, S., Poosankam, P., Song, D.: Dta++: dynamic taint analysis with targeted control-flow propagation. In: Network and Distributed System Security Symposium, NDSS 2011, San Diego, California, USA, February 2011

    Google Scholar 

  19. eSage Lab: Ioctl fuzzer. https://github.com/Cr4sh/ioctlfuzzer, windows NT kernel fuzzer

  20. Labs, C.: zzuf. http://caca.zoy.org/wiki/zzuf, multi-purpose fuzzer

  21. MITRE: Cve: Common vulnerabilities and exposures. https://cve.mitre.org/, the Standard for Information Security Vulnerability Names

  22. Molnar, D., Li, X.C., Wagner, D.A.: Dynamic test generation to find integer bugs in x86 binary linux programs. In: Proceedings of the Usenix Security Symposium, Montreal, Canada, 10–14 August 2009, pp. 67–82 (2009)

    Google Scholar 

  23. Mozilla: Web-based general-purpose bugtracker and testing tool. https://bugzilla.mozilla.org/

  24. NVD: National vulnerability database. https://nvd.nist.gov/home.cfm, automating vulnerability management, security measurement, and compliance checking

  25. Press, A.: Adobe Type 1 Font Format, 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston (1990)

    Google Scholar 

  26. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about dynamic taint analysis and forward symbolic execution (but might have been afraid to ask). In: 2010 IEEE Symposium on Security and privacy (SP), pp. 317–331. IEEE (2010)

    Google Scholar 

  27. Sec, I.: Spike fuzzer. https://www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt, network protocol fuzzer

  28. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for C. In: Proceedings of the 10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering, ESEC/FSE-13, pp. 263–272. ACM, New York (2005). http://doi.acm.org/10.1145/1081706.1081750

  29. Slowinska, A., Bos, H.: Pointless tainting? evaluating the practicality of pointer tainting. In: Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys 2009, pp. 61–74. ACM, New York (2009). http://doi.acm.org/10.1145/1519065.1519073

  30. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery. Addison-Wesley Professional, Amsterdam (2007)

    Google Scholar 

  31. Symantec: Online computer security news portal and purveyor of information security services. http://www.securityfocus.com/

  32. Wang, T., Wei, T., Gu, G., Zou, W.: Checksum-aware fuzzing combined with dynamic taint analysis and symbolic execution. ACM Trans. Inf. Syst. Secur. 14(2), 15:1–15:28 (2011). http://doi.acm.org/10.1145/2019599.2019600

  33. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in c compilers. SIGPLAN Not. 46(6), 283–294 (2011). http://doi.acm.org/10.1145/1993316.1993532

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoyin Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jiang, F., Zhang, C., Cheng, S. (2017). FFFuzzer: Filter Your Fuzz to Get Accuracy, Efficiency and Schedulability. In: Pieprzyk, J., Suriadi, S. (eds) Information Security and Privacy. ACISP 2017. Lecture Notes in Computer Science(), vol 10343. Springer, Cham. https://doi.org/10.1007/978-3-319-59870-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59870-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59869-7

  • Online ISBN: 978-3-319-59870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics