Skip to main content

CCA2 Key-Privacy for Code-Based Encryption in the Standard Model

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10346))

Included in the following conference series:

Abstract

The code-based public-key encryption schemes by McEliece and Niederreiter are famous candidates for the post-quantum world. In this work, we study key-privacy (or anonymity) for these schemes in the standard model. Specifically, we show that the following two paradigms for constructing \(\mathrm {IND}\text {-}\mathrm {CCA}2\) encryption yield \(\mathrm {IK}\text {-}\mathrm {CCA}2\) encryption, if the underlying primitive satisfies \(\mathrm {IK}\text {-}\mathrm {CPA}\) under k-repetition: (1) The Rosen-Segev construction (TCC 2009), we instantiate it with the Niederreiter scheme; (2) The Döttling et al. construction (IEEE Transactions on Information Theory 2012), we instantiate it with both the McEliece scheme and the Niederreiter scheme. As far as we know, these instantiations give the first IK-CCA2 code-based schemes in the standard model. In our proofs, we rely on an important observation by Yamakawa et al. (AAECC 2007) that the randomized McEliece encryption is \(\mathrm {IK}\text {-}\mathrm {CPA}\) in the standard model. As a side result, we show that the randomized Niederreiter encryption is \(\mathrm {IK}\text {-}\mathrm {CPA}\) as well.

Y. Yoshida, K. Morozov and K. Tanaka—Supported in part by IOHK, I-System, NRI, NTT, JST CREST JPMJCR14D6, JST OPERA, and JSPS KAKENHI 17H01695, 16H01705, 15K00186.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1_33

    Chapter  Google Scholar 

  2. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography. Springer Science & Business Media, Heidelberg (2009)

    Book  MATH  Google Scholar 

  3. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Döttling, N., Dowsley, R., Muller-Quade, J., Nascimento, A.C.A.: A CCA2 secure variant of the mceliece cryptosystem. IEEE Trans. Inf. Theory 58(10), 6672–6680 (2012)

    Article  MathSciNet  Google Scholar 

  5. Faugère, J., Gauthier-Umaña, V., Otmani, A., Perret, L., Tillich, J.: A distinguisher for high rate McEliece cryptosystems. In: 2011 IEEE Information Theory Workshop, ITW 2011, Paraty, Brazil, 16–20 October 2011, pp. 282–286 (2011)

    Google Scholar 

  6. Fischer, J.-B., Stern, J.: An efficient pseudo-random generator provably as secure as syndrome decoding. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 245–255. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9_22

    Google Scholar 

  7. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions of lossy and correlation-secure trapdoor functions. J. Cryptol. 26(1), 39–74 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), Seattle, Washigton, USA, 14–17 May 1989, pp. 25–32 (1989)

    Google Scholar 

  9. Hayashi, R.: Anonymity on public-key cryptosystems. Ph.D. thesis, Tokyo Institute of Technology (2007)

    Google Scholar 

  10. Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and \(\text{ HB }^{+}\) protocols. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer, Heidelberg (2006). doi:10.1007/11761679_6

    Chapter  Google Scholar 

  11. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems-conversions for McEliece PKC. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 19–35. Springer, Heidelberg (2001). doi:10.1007/3-540-44586-2_2

    Chapter  Google Scholar 

  12. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Prog. Rep. 4244, 114–116 (1978)

    Google Scholar 

  13. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theory-Probl. Upravleniya I Teorii Informatsii 15(2), 159–166 (1986)

    MATH  Google Scholar 

  14. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des. Codes Crypt. 49(1–3), 289–305 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Persichetti, E.: Secure and anonymous hybrid encryption from coding theory. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 174–187. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38616-9_12

    Chapter  Google Scholar 

  16. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5_25

    Chapter  Google Scholar 

  17. Yamakawa, S., Cui, Y., Kobara, K., Hagiwara, M., Imai, H.: On the key-privacy issue of McEliece public-key encryption. In: Boztaş, S., Lu, H.-F.F. (eds.) AAECC 2007. LNCS, vol. 4851, pp. 168–177. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77224-8_21

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yoshida, Y., Morozov, K., Tanaka, K. (2017). CCA2 Key-Privacy for Code-Based Encryption in the Standard Model. In: Lange, T., Takagi, T. (eds) Post-Quantum Cryptography . PQCrypto 2017. Lecture Notes in Computer Science(), vol 10346. Springer, Cham. https://doi.org/10.1007/978-3-319-59879-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59879-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59878-9

  • Online ISBN: 978-3-319-59879-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics