Skip to main content

Co-location Rules Discovery Process Focused on Reference Spatial Features Using Decision Tree Learning

  • Conference paper
  • First Online:
Advances in Artificial Intelligence: From Theory to Practice (IEA/AIE 2017)

Abstract

The co-location discovery process serves to find subsets of spatial features frequently located together. Many algorithms and methods have been designed in recent years; however, finding this kind of patterns around specific spatial features is a task in which the existing solutions provide incorrect results. Throughout this paper we propose a knowledge discovery process to find co-location patterns focused on reference features using decision tree learning algorithms on transactional data generated using maximal cliques. A validation test of this process is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: a summary of results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 236–256. Springer, Heidelberg (2001). doi:10.1007/3-540-47724-1_13

    Chapter  Google Scholar 

  2. Yu, W.: Spatial co-location pattern mining for location-based services in road networks. Expert Syst. Appl. 46, 324–335 (2016)

    Article  Google Scholar 

  3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  4. Shekhar, S., Evans, M.R., Kang, J.M., Mohan, P.: Identifying patterns in spatial information: a survey of methods. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 1(3), 193–214 (2011)

    Article  Google Scholar 

  5. Kim, S.K., Lee, J.H., Ryu, K.H., Kim, U.: A framework of spatial co-location pattern mining for ubiquitous GIS. Multimedia Tools Appl. 71(1), 199–218 (2014)

    Article  Google Scholar 

  6. Xiong, H., Shekhar, S., Huang, Y., Kumar, V., Ma, X., Yoo, J.S.: A framework for discovering co-location patterns in data sets with extended spatial objects. In: SDM, pp. 78–89 (2004)

    Google Scholar 

  7. Huang, Y., Xiong, H., Shekhar, S., Pei, J.: Mining confident co-location rules without a support threshold. In: Proceedings of the 2003 ACM Symposium on Applied Computing, pp. 497–501. ACM (2003)

    Google Scholar 

  8. Huang, Y., Pei, J., Xiong, H.: Mining co-location patterns with rare events from spatial data sets. Geoinformatica 10(3), 239–260 (2006)

    Article  Google Scholar 

  9. Yoo, J.S., Shekhar, S.: A joinless approach for mining spatial colocation patterns. IEEE Trans. Knowl. Data Eng. 18(10), 1323–1337 (2006)

    Article  Google Scholar 

  10. Celik, M., Kang, J.M., Shekhar, S.: Zonal co-location pattern discovery with dynamic parameters. In: Seventh IEEE International Conference on Data Mining 2007, ICDM 2007, pp. 433–438. IEEE (2007)

    Google Scholar 

  11. Eick, C.F., Parmar, R., Ding, W., Stepinski, T.F., Nicot, J.P.: Finding regional co-location patterns for sets of continuous variables in spatial datasets. In: Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 30. ACM (2008)

    Google Scholar 

  12. Adilmagambetov, A., Zaiane, O.R., Osornio-Vargas, A.: Discovering co-location patterns in datasets with extended spatial objects. In: Data Warehousing and Knowledge Discovery, pp. 84–96. Springer, Heidelberg (2013)

    Google Scholar 

  13. Venkatesan, M., Thangavelu, A., Prabhavathy, P.: Event centric modeling approach in colocation pattern analysis from spatial data. arXiv preprint arXiv:1109.1144 (2011)

  14. Yoo, J.S., Shekhar, S., Celik, M.: A join-less approach for co-location pattern mining: a summary of results. In: Fifth IEEE International Conference on Data Mining, pp. 813–816. IEEE (2005)

    Google Scholar 

  15. García-Martínez, R., Britos, P., Rodríguez, D.: Information mining processes based on intelligent systems. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds.) IEA/AIE 2013. LNCS, vol. 7906, pp. 402–410. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38577-3_41

    Chapter  Google Scholar 

  16. Martins, S., Pesado, P., García-Martínez, R.: Intelligent systems in modeling phase of information mining development process. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds.) IEA/AIE 2016. LNCS, vol. 9799, pp. 3–15. Springer, Cham (2016)

    Google Scholar 

  17. Silver, B.: BPMN Method and Style, with BPMN Implementer’s Guide: A Structured Approach for Business Process Modeling and Implementation Using BPMN 2.0, p. 450. Cody-Cassidy Press, Aptos (2011)

    Google Scholar 

  18. Quinlan, J.R.: C4.5: programs for machine learning (1993)

    Google Scholar 

  19. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  20. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theoret. Comput. Sci. 363(1), 28–42 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rakotomalala, R.: TANAGRA: a free software for research and academic purposes. In: Proceedings of EGC, vol. 2, pp. 697–702 (2005)

    Google Scholar 

  22. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

Download references

Acknowledgements

The research presented in this paper was partially funded by the PhD Scholarship Program to reinforce R+D+I areas (2016–2020) of the Technological National University, Research Project 80020160400001LA of National University of Lanús, and PIO CONICET-UNLa 22420160100032CO of National Research Council of Science and Technology (CONICET), Argentina. The authors also want to extend their gratitude to Kevin-Mark Bozell Poudereux for proofreading the translation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón García-Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rottoli, G.D., Merlino, H., García-Martinez, R. (2017). Co-location Rules Discovery Process Focused on Reference Spatial Features Using Decision Tree Learning. In: Benferhat, S., Tabia, K., Ali, M. (eds) Advances in Artificial Intelligence: From Theory to Practice. IEA/AIE 2017. Lecture Notes in Computer Science(), vol 10350. Springer, Cham. https://doi.org/10.1007/978-3-319-60042-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60042-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60041-3

  • Online ISBN: 978-3-319-60042-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics