Skip to main content

Argumentative Approaches to Reasoning with Consistent Subsets of Premises

  • Conference paper
  • First Online:
Advances in Artificial Intelligence: From Theory to Practice (IEA/AIE 2017)

Abstract

It has been shown that entailments based on the maximally consistent subsets (MCS) of a given set of premises can be captured by Dung-style semantics for argumentation frameworks. This paper shows that these links are much tighter and go way beyond simplified forms of reasoning with MCS. Among others, we consider different types of entailments that these kinds of reasoning induce, extend the framework for arbitrary (not necessarily maximal) consistent subsets, and incorporate non-classical logics. The introduction of declarative methods for reasoning with MCS by means of (sequent-based) argumentation frameworks provides, in particular, a better understanding of logic-based argumentation and allows to reevaluate some negative results concerning the latter.

O. Arieli and A. Borg—Supported by the Israel Science Foundation (grant 817/15).

A. Borg and C. Straßer—Supported by the Alexander von Humboldt Foundation and the German Ministry for Education and Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thus, unlike \(\varGamma \), \(\varDelta \), when \(\mathsf{S}\), \(\mathsf{T}\) are assumed to be finite, this will be indicated explicitly.

  2. 2.

    Somewhat abusing the notations, we shall sometimes identify \( Attack \) with \({\mathfrak A}\).

  3. 3.

    To prevent attacks on tautologies, in Defeating Rebuttal we assume that \(\varGamma _2 \ne \emptyset \).

References

  1. Amgoud, L., Besnard, P.: Logical limits of abstract argumentation frameworks. J. Appl. Non-Classical Logics 23(3), 229–267 (2013)

    Article  MathSciNet  Google Scholar 

  2. Arieli, O.: A sequent-based representation of logical argumentation. In: Leite, J., Son, T.C., Torroni, P., Torre, L., Woltran, S. (eds.) CLIMA 2013. LNCS (LNAI), vol. 8143, pp. 69–85. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40624-9_5

    Chapter  Google Scholar 

  3. Arieli, O., Straßer, C.: Sequent-based logical argumentation. J. Argument Comput. 6(1), 73–99 (2015)

    Article  Google Scholar 

  4. Arieli, O., Straßer, C.: Argumentative approaches to reasoning with maximal consistency. In: Proceedings of KR 2016, pp. 509–512. AAAI Press (2016)

    Google Scholar 

  5. Baral, C., Kraus, S., Minker, J.: Combining multiple knowledge bases. IEEE Trans. Knowl. Data Eng. 3(2), 208–220 (1991)

    Article  Google Scholar 

  6. Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of inconsistent knowledge bases: a comparative study part 1: The flat case. Stud. Logica. 58(1), 17–45 (1997)

    Article  MATH  Google Scholar 

  7. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Besnard, P., Hunter, A.: Argumentation based on classical logic. In: Rahwan, I., Simary, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 133–152. Springer, New York (2009)

    Google Scholar 

  9. Brewka, G.: Preferred subtheories: an extended logical framework for default reasoning. In: Proceedings of IJCAI 1989, pp. 1043–1048. Morgan Kaufmann (1989)

    Google Scholar 

  10. Cayrol, C.: On the relation between argumentation and non-monotonic coherence-based entailment. In: Proceedings of IJCAI 1995, pp. 1443–1448. Morgan Kaufmann (1995)

    Google Scholar 

  11. da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame J. Formal Logic 15, 497–510 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and \(n\)-person games. Artif. Intell. 77, 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gentzen, G.: Untersuchungen über das logische Schliessen. Math. Z. 39, 176–210 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical logic arguments: postulates and properties. Artif. Intell. 175(9–10), 1479–1497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Konieczny, S., Pino Pérez, R.: Merging information under constraints: a logical framework. Logic Comput. 12(5), 773–808 (2002)

    Google Scholar 

  16. Malouf, R.: Maximal consistent subsets. Comput. Linguist. 33(2), 153–160 (2007)

    Article  Google Scholar 

  17. Pollock, J.: How to reason defeasibly. Artif. Intell. 57(1), 1–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Priest, G.: Reasoning about truth. Artif. Intell. 39, 231–244 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rescher, N., Manor, R.: On inference from inconsistent premises. Theor. Decis. 1, 179–217 (1970)

    Article  MATH  Google Scholar 

  20. Straßer, C., Arieli, O.: Sequent-based argumentation for normative reasoning. In: Cariani, F., Grossi, D., Meheus, J., Parent, X. (eds.) DEON 2014. LNCS (LNAI), vol. 8554, pp. 224–240. Springer, Cham (2014). doi:10.1007/978-3-319-08615-6_17

    Google Scholar 

  21. Urquhart, A.: Basic many-valued logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. II, 2nd edn., pp. 249–295. Kluwer (2001)

    Google Scholar 

  22. Vesic, S.: Identifying the class of maxi-consistent operators in argumentation. J. Artif. Intell. Res. 47, 71–93 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Arieli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Arieli, O., Borg, A., Straßer, C. (2017). Argumentative Approaches to Reasoning with Consistent Subsets of Premises. In: Benferhat, S., Tabia, K., Ali, M. (eds) Advances in Artificial Intelligence: From Theory to Practice. IEA/AIE 2017. Lecture Notes in Computer Science(), vol 10350. Springer, Cham. https://doi.org/10.1007/978-3-319-60042-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60042-0_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60041-3

  • Online ISBN: 978-3-319-60042-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics