Abstract
In Twitter based applications such as tweet summarization, the existence of ill-intentioned users so-called spammers imposes challenges to maintain high performance level in those applications. Conventional social spammer/spam detection methods require significant and unavoidable processing time, extending to months for treating large collections of tweets. Moreover, these methods are completely dependent on supervised learning approach to produce classification models, raising the need for ground truth data-set. In this paper, we design an unsupervised language model based method that performs collaboration with other social networks to detect spam tweets in large-scale topics (e.g. hashtags). We experiment our method on filtering more than 6 million tweets posted in 100 trending topics where Facebook social network is accounted in the collaboration. Experiments demonstrate highly competitive efficiency in regards to processing time and classification performance, compared to conventional spam tweet detection methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benevenuto, F., Magno, G., Rodrigues, T., Almeida, V.: Detecting spammers on Twitter. In: Collaboration, Electronic messaging, Anti-abuse and Spam Conference (CEAS), p. 12 (2010)
Agarwal, N., Yiliyasi, Y.: Information quality challenges in social media. In: International Conference on Information Quality (ICIQ) (2010)
Wang, A.H.: Don’t follow me: spam detection in Twitter. In: Proceedings of the 2010 International Conference on Security and Cryptography (SECRYPT), pp. 1–10, July 2010
Yardi, S., Romero, D., Schoenebeck, G., danah boyd: Detecting spam in a Twitter network. First Monday 15(1) (2009)
Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks. In: Proceedings of the 26th Annual Computer Security Applications Conference (ACSAC 2010), pp. 1–9. ACM, New York (2010)
Yang, C., Harkreader, R.C., Gu, G.: Die free or live hard? Empirical evaluation and new design for fighting evolving Twitter spammers. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 318–337. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23644-0_17
Amleshwaram, A.A., Reddy, N., Yadav, S., Guofei, G., Yang, C.: Cats: characterizing automation of Twitter spammers. In: 2013 Fifth International Conference on Communication Systems and Networks (COMSNETS), pp. 1–10. IEEE (2013)
Chu, Z., Widjaja, I., Wang, H.: Detecting social spam campaigns on Twitter. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 455–472. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31284-7_27
Martinez-Romo, J., Araujo, L.: Detecting malicious tweets in trending topics using a statistical analysis of language. Expert Syst. Appl. 40(8), 2992–3000 (2013)
McCord, M., Chuah, M.: Spam detection on Twitter using traditional classifiers. In: Calero, J.M.A., Yang, L.T., Mármol, F.G., GarcÃa Villalba, L.J., Li, A.X., Wang, Y. (eds.) ATC 2011. LNCS, vol. 6906, pp. 175–186. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23496-5_13
Cao, C., Caverlee, J.: Detecting spam URLs in social media via behavioral analysis. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 703–714. Springer, Cham (2015). doi:10.1007/978-3-319-16354-3_77
Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Detecting automation of Twitter accounts: are you a human, bot, or cyborg? IEEE Trans. Dependable Secure Comput. 9(6), 811–824 (2012)
Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275–281. ACM (1998)
Kullback, S.: The Kullback-Leibler distance. Am. Stat. 41(4), 340–341 (1987)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The Weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
McCord, M., Chuah, M.: Spam detection on Twitter using traditional classifiers. In: Calero, J.M.A., Yang, L.T., Mármol, F.G., GarcÃa Villalba, L.J., Li, A.X., Wang, Y. (eds.) ATC 2011. LNCS, vol. 6906, pp. 175–186. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23496-5_13
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/cjlin/libsvm
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Washha, M., Qaroush, A., Mezghani, M., Sedes, F. (2017). Information Quality in Social Networks: A Collaborative Method for Detecting Spam Tweets in Trending Topics. In: Benferhat, S., Tabia, K., Ali, M. (eds) Advances in Artificial Intelligence: From Theory to Practice. IEA/AIE 2017. Lecture Notes in Computer Science(), vol 10351. Springer, Cham. https://doi.org/10.1007/978-3-319-60045-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-60045-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60044-4
Online ISBN: 978-3-319-60045-1
eBook Packages: Computer ScienceComputer Science (R0)