Abstract
We study descriptive complexity properties of the class of regular bifix-free languages, which is the intersection of prefix-free and suffix-free regular languages. We show that there exist universal bifix-free languages that meet all the bounds for the state complexity of basic operations (Boolean operations, product, star, and reversal). This is in contrast with suffix-free languages, where it is known that there does not exist such languages. Then we present a stream of bifix-free languages that is most complex in terms of all basic operations, syntactic complexity, and the number of atoms and their complexities, which requires a superexponential alphabet. We also complete the previous results by characterizing state complexity of product, star, and reversal, and establishing tight upper bounds for atom complexities of bifix-free languages. Moreover, we consider the problem of the minimal size of an alphabet required to meet the bounds, and the problem of attainable values of state complexities (magic numbers).
This work was supported in part by the National Science Centre, Poland under project number 2014/15/B/ST6/00615.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge (2009)
Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15(1/2), 71–89 (2010)
Brzozowski, J.A.: In search of the most complex regular languages. Int. J. Found. Comput. Sc. 24(6), 691–708 (2013)
Brzozowski, J.A., Davies, S., Liu, B.Y.V.: Most complex regular ideals (2015). http://arxiv.org/abs/1511.00157
Brzozowski, J.A., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bifix-, factor-, and subword-free regular languages. Acta Cyber. 21(4), 507–527 (2014)
Brzozowski, J.A., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages. Theoret. Comput. Sci. 449, 37–53 (2012)
Brzozowski, J.A., Shallit, J., Xu, Z.: Decision problems for convex languages. Inf. Comput. 209, 353–367 (2011)
Brzozowski, J.A., Sinnamon, C.: Complexity of Prefix-Convex Regular Languages (2017, to appear). http://arxiv.org/abs/1605.06697
Brzozowski, J.A., Sinnamon, C.: Most Complex Non-Returning Regular Languages (2017). http://arxiv.org/abs/1701.03944
Brzozowski, J., Szykuła, M.: Complexity of suffix-free regular languages. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 146–159. Springer, Cham (2015). doi:10.1007/978-3-319-22177-9_12
Brzozowski, J.A., Tamm, H.: Theory of átomata. Theoret. Comput. Sci. 539, 13–27 (2014)
Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012). doi:10.1007/978-3-642-25929-6_9
Eom, H.S., Han, Y.S., Jirásková, G.: State complexity of basic operations on non-returning regular languages. Fundam. Informaticae 144(2), 161–182 (2016)
Ferens, R., Szykuła, M.: Complexity of bifix-free regular languages (2017). http://arxiv.org/abs/1701.03768
The GAP Group: GAP - Groups, Algorithms, and Programming (2016). http://www.gap-system.org
Iván, S.: Complexity of atoms, combinatorially. Inf. Process. Lett. 116(5), 356–360 (2016)
Jirásková, G.: On the state complexity of complements, stars, and reversals of regular languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 431–442. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85780-8_34
Jirásková, G., Palmovský, M., Šebej, J.: Kleene closure on regular and prefix-free languages. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 226–237. Springer, Cham (2014). doi:10.1007/978-3-319-08846-4_17
Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1, pp. 511–607. Springer, Heidelberg (1997)
McNaughton, R., Papert, S.A.: Counter-Free Automata. The MIT Press, Cambridge (1971). (M.I.T. Research Monograph No. 65)
Pin, J.E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1, pp. 679–746. Springer, New York, USA (1997)
Šebej, J.: Reversal on regular languages and descriptional complexity. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 265–276. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39310-5_25
Szykuła, M., Wittnebel, J.: Syntactic complexity of bifix-free languages. In: Carayol, A., Nicaud, C. (eds.) CIAA 2017. LNCS, vol. 10329, pp. 201–212. Springer, Cham (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ferens, R., Szykuła, M. (2017). Complexity of Bifix-Free Regular Languages. In: Carayol, A., Nicaud, C. (eds) Implementation and Application of Automata. CIAA 2017. Lecture Notes in Computer Science(), vol 10329. Springer, Cham. https://doi.org/10.1007/978-3-319-60134-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-60134-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60133-5
Online ISBN: 978-3-319-60134-2
eBook Packages: Computer ScienceComputer Science (R0)