Skip to main content

APART: Automatic Political Actor Recommendation in Real-time

  • Conference paper
  • First Online:
Social, Cultural, and Behavioral Modeling (SBP-BRiMS 2017)

Abstract

Extracting actor data from news reports is important when generating event data. Hand-coded dictionaries are used to code actors and actions. Manually updating dictionaries for new actors and roles is costly and there is no automated method. We propose a dynamic frequency-based actor ranking algorithm with partial string matching for new actor-role detection, based on similar actors in the CAMEO dictionary. This is compared to a graph-based weighted label propagation baseline method. Results show our method outperforms the alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Apache Spark. http://spark.apache.org/

  2. Petrarch. http://petrarch.readthedocs.org/en/latest/

  3. Stanford CoreNLP. http://nlp.stanford.edu/software/corenlp.shtml

  4. The Penn Treebank Project. https://www.cis.upenn.edu/~treebank/

  5. Web Scraper. http://oeda-scraper.readthedocs.io/en/latest

  6. Beieler, J., Brandt, P.T., Halterman, A., Schrodt, P.A., Simpson, E.M.: Generating political event data in near real time: opportunities and challenges. In: Michael Alvarez, R. (ed.) Computational Social Science: Discovery and Prediction, pp. 98–120. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  7. Boschee, E., Lautenschlager, J., O’Brien, S., Shellman, S., Starz, J., Ward, M.: ICEWS Coded Event Data (2016)

    Google Scholar 

  8. Boschee, E., Natarajan, P., Weischedel, R.: Automatic extraction of events from open source text for predictive forecasting. In: Subrahmanian, V.S. (ed.) Handbook of Computational Approaches to Counterterrorism, pp. 51–67. Springer, New York (2013)

    Chapter  Google Scholar 

  9. Broder, A.Z.: On the resemblance and containment of documents. In: Compression and Complexity of Sequences 1997, Proceedings, pp. 21–29. IEEE (1997)

    Google Scholar 

  10. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10, 707 (1966)

    MathSciNet  MATH  Google Scholar 

  11. Lou, H., Li, S., Zhao, Y.: Detecting community structure using label propagation with weighted coherent neighborhood propinquity. Phys. A Stat. Mech. Appl. 392(14), 3095–3105 (2013)

    Article  Google Scholar 

  12. O’Brien, S.: Crisis early warning and decision support: contemporary approaches and thoughts on future research. Int. Stud. Rev. 12(1), 87–104 (2010)

    Article  Google Scholar 

  13. Saraf, P., Ramakrishnan, N.: EMBERS autogsr: automated coding of civil unrest events. In: ACM SIGKDD, San Francisco, CA, USA, 13–17 August 2016, pp. 599–608 (2016)

    Google Scholar 

  14. Schrodt,P.A.: TABARI: Textual Analysis by Augmented Replacement Instructions (2009). http://eventdata.psu.edu/tabari.html

  15. Schrodt, P.A., Davis, S.G., Weddle, J.L.: Political science: KEDS-a program for the machine coding of event data. Soc. Sci. Comput. Rev. 12(4), 561–587 (1994)

    Article  Google Scholar 

  16. Schrodt, P.A., Gerner, D.J., Yilmaz, Ö.: Conflict and mediation event observations (CAMEO): An event data framework for a post Cold War world. In: Bercovitch, J., Gartner, S. (eds.) International Conflict Mediation: New Approaches and Findings. Routledge, New York (2009)

    Google Scholar 

  17. Schrodt, P.A., Van Brackle, D.: Automated coding of political event data. In: Subrahmanian, V.S. (ed.) Handbook of Computational Approaches to Counterterrorism, pp. 23–49. Springer, New York (2013)

    Chapter  Google Scholar 

  18. Solaimani, M., Gopalan, R., Khan, L., Brandt, P.T., Thuraisingham, B.: Spark-based political event coding. In: BigDataService, pp. 14–23. IEEE (2016)

    Google Scholar 

Download references

Acknowledgments

Support from the National Science Foundation (NSF) SBE-SMA-1539302, CNS-1229652, and SBE-SES-1528624; and the Air Force Office of Scientific Research (AFOSR): FA-9550-12-1-0077. Any opinions, findings, and conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the NSF or the AFOSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito D’Orazio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Solaimani, M., Salam, S., Khan, L., Brandt, P.T., D’Orazio, V. (2017). APART: Automatic Political Actor Recommendation in Real-time. In: Lee, D., Lin, YR., Osgood, N., Thomson, R. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2017. Lecture Notes in Computer Science(), vol 10354. Springer, Cham. https://doi.org/10.1007/978-3-319-60240-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60240-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60239-4

  • Online ISBN: 978-3-319-60240-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics