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Abstract. A regular language L is non-returning if in the minimal de-
terministic finite automaton accepting it there are no transitions into the
initial state. Eom, Han and Jirásková derived upper bounds on the state
complexity of boolean operations and Kleene star, and proved that these
bounds are tight using two different binary witnesses. They derived upper
bounds for concatenation and reversal using three different ternary wit-
nesses. These five witnesses use a total of six different transformations.
We show that for each n > 4 there exists a ternary witness of state com-
plexity n that meets the bound for reversal and that at least three letters
are needed to meet this bound. Moreover, the restrictions of this witness
to binary alphabets meet the bounds for product, star, and boolean op-
erations. We also derive tight upper bounds on the state complexity
of binary operations that take arguments with different alphabets. We
prove that the maximal syntactic semigroup of a non-returning language
has (n− 1)n elements and requires at least

(

n

2

)

generators. We find the
maximal state complexities of atoms of non-returning languages. Finally,
we show that there exists a most complex non-returning language that
meets the bounds for all these complexity measures.

Keywords: atom, boolean operation, concatenation, different alphabets,
most complex, reversal, regular language, star, state complexity, syntac-
tic semigroup, transition semigroup, unrestricted complexity

1 Introduction

Formal definitions are postponed until Section 2; we assume the reader is famil-
iar with basic properties of regular languages and finite automata as described
in [13,15], for example.

A deterministic finite automaton (DFA) is non-returning if there are no tran-
sitions into its initial state. A regular language is non-returning if its minimal
DFA has that property. The state complexity of a regular language L is the
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number of states in the minimal DFA accepting L. The state complexity of an
operation on regular languages is defined as the maximal state complexity of the
result of the operation, expressed as a function of the state complexities of the
operands.

The state complexity of common operations (union, intersection, difference,
symmetric difference, Kleene star, reverse and product/concatenation) was stud-
ied by Eom, Han and Jirásková [9]. They pointed out that several subclasses of
regular languages have the non-returning property; these subclasses include the
class of suffix-free languages (suffix codes) and its subclasses (for example, bifix-
free languages), and finite languages.

A regular language Ln(a, b, c) of state complexity n is defined for all n > 3 in
Figure 1. It was shown in [2] that the sequence (L3(a, b, c), . . . , Ln(a, b, c), . . . ) of
these languages meets the upper bounds (for regular languages) on the complexi-
ties of all the basic operations on regular languages as follows: If L(b, a) is L(a, b)
with the roles of a and b interchanged, thenLm(a, b) ◦ Ln(b, a) meets the bound
mn for all binary boolean operations ◦ that depend on both arguments; if m 6= n,
Lm(a, b)◦Ln(a, b) meets the bound mn; (Ln(a, b))

∗ meets the bound 2n−1+2n−2;
(Ln(a, b, c))

R meets the bound 2n for reversal; and Lm(a, b, c)Ln(a, b, c) meets
the bound (m− 1)2n + 2n−1 for product.

0 1 2 . . . n − 2 n − 1

c

a, b

b
a

b, c

a a

b, c

a

a, c

bc

Fig. 1. Most complex regular language Ln(a, b, c).

It was proposed in [2] that the size of the syntactic semigroup of a regular
language is another worthwhile measure of the complexity of the language. The
syntactic semigroup is isomorphic to the transition semigroup of the minimal
DFA of L, that is, the semigroup of transformations of the state set of the DFA
induced by non-empty words.

Another complexity measure suggested in [2] is the number and state com-
plexities of the atoms of the language. An atom is a certain kind of intersection of
complemented and uncomplemented quotients of L, where a quotient of L ⊆ Σ∗

by a word w ∈ Σ∗ is the language w−1L = {x | wx ∈ L}.
It was shown in [2] that the languages Ln(a, b, c) not only meet the bounds

on the state complexities of operations, but also have the largest syntactic semi-
groups (of size nn), and the largest number of atoms (2n), all of which have
the maximal possible state complexities. In this sense these are most complex
regular languages.

In this paper we show that there also exist most complex non-returning
languages. For each n > 4, we define a language of state complexity n. We prove
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that the syntactic semigroup of this language has (n − 1)n elements, that it is
generated by

(

n

2

)

elements, and that the number of generators cannot be reduced.
We also show that this language has 2n atoms, all of which have maximal state
complexity. We demonstrate that the upper bound on the state complexity of
reversal is met by a single ternary language, and that no binary language meets
this bound. Moreover, restrictions of this language to binary alphabets meet
the bounds for star, product and boolean operations. This is in contrast to [9]
where several types of witnesses are used to meet the various bounds. Thus we
correct an error in [9, Table 1], where it is stated that the upper bound on the
complexity of product cannot be reached with binary witnesses. Finally, we also
derive upper bounds on unrestricted binary operations [3], that is, operations on
languages over different alphabets, and show that our non-returning language
meets these bounds.

2 Preliminaries

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F ),
where Q is a finite non-empty set of states, Σ is a finite non-empty alphabet,
δ : Q×Σ → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q
is the set of final states. We extend δ to a function δ : Q × Σ∗ → Q as usual.
A DFA D accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F . The language accepted by D is
denoted by L(D). If q is a state of D, then the language Lq of q is the language
accepted by the DFA (Q,Σ, δ, q, F ). A state is empty if its language is empty.
Two states p and q of D are equivalent if Lp = Lq. A state q is reachable if there
exists w ∈ Σ∗ such that δ(q0, w) = q. A DFA is minimal if all of its states are
reachable and no two states are equivalent.

A nondeterministic finite automaton (NFA) is a quintuple D = (Q,Σ, δ, I, F )
where Q, Σ and F are defined as in a DFA, δ : Q × Σ → 2Q is the transition
function, and I ⊆ Q is the set of initial states.

We use Qn = {0, . . . , n− 1} as our basic set with n elements. A transforma-
tion of Qn is a mapping t : Qn → Qn. The image of q ∈ Qn under t is denoted
by qt, and this notation is extended to subsets of Qn. The rank of a transfor-
mation t is the cardinality of Qnt. If s and t are transformations of Qn, their
composition is denoted (qs)t when applied to q ∈ Qn. Let TQn

be the set of all
nn transformations of Qn; then TQn

is a monoid under composition.
For k > 2, a transformation t of a set P = {q0, q1, . . . , qk−1} ⊆ Qn is a k-cycle

if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. This k-cycle is denoted by
(q0, q1, . . . , qk−1), and leaves the states in Qn \P unchanged. A 2-cycle (q0, q1) is
called a transposition. A transformation that sends state p to q and acts as the
identity on the remaining states is denoted by (p → q). If a transformation of
Qn has rank n− 1, then there is exactly one pair of distinct elements i, j ∈ Qn

such that it = jt. We say a transformation t of Qn is of type {i, j} if t has rank
n− 1 and it = jt for i < j.

The syntactic congruence of a language L ⊆ Σ∗ is defined on Σ+ as follows:
For x, y ∈ Σ+, x≈L y if and only if wxz ∈ L ⇔ wyz ∈ L for all w, z ∈ Σ∗. The
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quotient set Σ+/≈L of equivalence classes of ≈L is a semigroup, the syntactic
semigroup TL of L.

Let D = (Qn, Σ, δ, 0, F ) be a DFA. For each word w ∈ Σ∗, the transition
function induces a transformation δw of Qn by w: for all q ∈ Qn, qδw = δ(q, w).
The set TD of all such transformations by non-empty words is the transition
semigroup of D under composition [14]. Sometimes we use the word w to denote
the transformation it induces; thus we write qw instead of qδw. We extend the
notation to sets: if P ⊆ Qn, then Pw = {pw | p ∈ P}. We also find it convenient

to write P
w

−→ Pw to indicate that the image of P under w is Pw.
If D is a minimal DFA of L, then TD is isomorphic to the syntactic semigroup

TL of L [14], and we represent elements of TL by transformations in TD. The
size of this semigroup has been used as a measure of complexity [2,8,10,12].

Atoms are defined by a left congruence, where two words x and y are equiv-
alent whenever ux ∈ L if and only if uy ∈ L for all u ∈ Σ∗. Thus x and y are
equivalent whenever x ∈ u−1L if and only if y ∈ u−1L for all u ∈ Σ∗. An equiv-
alence class of this relation is an atom of L [7]. Thus an atom is a non-empty
intersection of complemented and uncomplemented quotients of L. The number
of atoms and their state complexities were suggested as possible measures of
complexity of regular languages [2], because all the quotients of a language, and
also the quotients of atoms, are always unions of atoms [6,7,11].

Suppose ◦ is a unary operation on languages, and f(n) is an upper bound on
the state complexity of this operation. If the state complexity of (Ln)

◦ is f(n),
then Ln is called a witness to the state complexity of ◦ for that n. In general,
we need a sequence (Lk, Lk+1, . . . , ) of such languages; this sequence is called a
stream. Often a stream does not start at 1 because the bound may not hold for
small values of n. For a binary operation we need two streams. The languages
in a stream usually have the same form and differ only in the parameter n.

Sometimes the same stream can be used for both operands of a binary oper-
ation, but this is not always possible. For example, for boolean operations when
m = n, the state complexity of Ln∪Ln = Ln is n, whereas it should be mn = n2.
However, in many cases the second language is a "dialect" of the first, that is, it
“differs only slightly” from the first. A dialect of Ln(Σ) is a language obtained
from Ln(Σ) by deleting some letters of Σ in the words of Ln(Σ) – by this we
mean that words containing these letters are deleted – or replacing them by
letters of another alphabet Σ′. In this paper we will encounter only two types
of dialects:

1. A dialect in which some letters were deleted; for example, Ln(a, b) is a dialect
of Ln(a, b, c) with c deleted, and Ln(a,−, c) is a dialect with b deleted.

2. A dialect in which the roles of two letters are exchanged; for example, Ln(b, a)
is such a dialect of Ln(a, b).

These two types of dialects can be combined, for example, in Ln(a,−, b) the
letter c is deleted, and b plays the role that c played originally. The notion of
dialects also extends to DFAs; for example, if Dn(a, b, c) recognizes Ln(a, b, c)
then Dn(a,−, b) recognizes the dialect Ln(a,−, b).
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3 Main Results

From now on by complexity we mean state complexity. If a word w induces a
transformation t in a DFA, we denote this by w : t.

Let Γ = {ai,j | 0 6 i < j 6 n − 1}, where ai,j is a letter that induces any
transformation of type {i, j} and does not map any state to 0. Let Γ ′ = Γ \
{a0,n−1, a0,1, a1,n−1, a1,2}. Let Σ = {a, b, c, d} ∪ Γ ′, where a : (1, . . . , n− 1)(0 →
1), b : (1, 2)(0 → 2), c : (2, . . . , n− 1)(1 → 2)(0 → 1), and d : (0 → 2). That is:

– qa = q + 1 for 0 6 q 6 n− 2, and (n− 1)a = 1.
– 0b = 2, 1b = 2, 2b = 1 and qb = q for q 6∈ {0, 1, 2}.
– qc = q + 1 for 0 6 q 6 n− 2, and (n− 1)c = 2.
– 0d = 2 and qd = q for q 6= 0.

Note that a, b, c and d are transformations of types {0, n− 1}, {0, 1}, {1, n− 1}
and {0, 2}, respectively. Note also that a, b and c restricted to Qn \ {0} generate
all the transformations of {1, . . . , n− 1}. This follows from the well-known fact
that the full transformation semigroup on a set X can be generated by the
symmetric group on X together with a transformation of X with rank |X | − 1.
For X = {1, . . . , n− 1}, we see that {(1, . . . , n− 1), (1, 2)} (the restrictions of a
and b) generate the symmetric group, and (2, . . . , n − 1)(1→2) (the restriction
of c) is a transformation of rank |X | − 1 = n− 2.

We are now ready to define a most complex non-returning DFA and language.

Definition 1. For n > 4, let Dn = Dn(Σ) = (Qn, Σ, δn, 0, {n− 1}), where Σ =
{a, b, c, d}∪Γ ′, and δn is defined in accordance with the transformations described
above. See Figure 2. Let Ln = Ln(Σ) be the language accepted by Dn(Σ).

0 1 2 3 . . . n − 2 n − 1
a, c

d

b, d

a, b, c

b

d

a, c

b, d

a, c a, c

b, d

a, c

a

c

b, d

Fig. 2. Most complex non-returning language Ln(Σ) of Definition 1. The letters in
Γ ′ = Σ \ {a, b, c, d} are omitted.

Theorem 1 (Most Complex Non-Returning Languages). For each n > 4,
the DFA of Definition 1 is minimal and non-returning. The stream (Ln(Σ) | n >

4) with some dialect streams is most complex in the class of regular non-returning
languages in the following sense:

1. The syntactic semigroup of Ln(Σ) has cardinality (n− 1)n, and at least
(

n
2

)

letters are required to reach this bound.
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2. Each quotient of Ln(a) has complexity n − 1, except L itself, which has
complexity n.

3. The reverse of Ln(a, b, c) has complexity 2n, and at least three letters are
needed to meet this bound. Moreover, Ln(a, b, c) has 2n atoms.

4. For each atom AS of Ln(Σ), the complexity κ(AS) satisfies:

κ(AS) 6

{

2n−1, if S ∈ {∅, Qn};

2 +
∑|S|

x=1

∑|S|
y=1

(

n−1
x

)(

n−1−x

y

)

, if ∅ ( S ( Qn.

Moreover, at least
(

n

2

)

letters are required to meet these bounds.
5. The star of Ln(a, b) has complexity 2n−1.
6. (a) Restricted product: κ(Lm(a, b)Ln(a,−, b)) = (m− 1)2n−1 + 1.

(b) Unrestricted product: For m,n > 4, let Lm (respectively, Ln) be a non-
returning language of complexity m (respectively, n) over an alphabet Σ′,
(respectively, Σ). Then the complexity of product is at most m2n−1 + 1,
and this bound is met by Lm(a, b) and Ln(a,−, b, d).

7. (a) Restricted boolean operations: κ(Lm(a, b)◦Ln(b, a)) = mn− (m+n−2).
(b) In case m 6= n, κ(Lm(a, b) ◦ Ln(a, b)) = mn− (m+ n− 2).
(c) Unrestricted boolean operations: The complexity of Lm(a, b, c)◦Ln(b, a, d)

is mn+ 1 if ◦ ∈ {∪,⊕}, that of Lm(a, b, c) \Ln(b, a) is mn− n+ 2, and
of Lm(a, b) ∩ Ln(b, a) is mn− (m+ n− 2).

All of these bounds are maximal for non-returning languages.

Proof. From the definition of the letters of Σ it is obvious that the DFA Dn

is non-returning, and that any pair (p, q) of states can be distinguished by the
shortest word in a∗ accepted by p but not by q.

1. This follows from Propositions 1 and 2.
2. Obvious.
3. By Proposition 3 the number of atoms of Ln(a, b, c) is 2n. By [7] the com-

plexity of the reverse is the same as the number of atoms. By Proposition 4
at least three letters are required to meet this bound on the number of atoms
and the complexity of reverse.

4. See Propositions 5, 6, and 7.
5. See Proposition 8.
6. See Propositions 9 and 10.
7. See Propositions 11 and 12.

The rest of this paper is devoted to the proofs of the propositions above. ⊓⊔

4 Syntactic Semigroup

For all basic operations on non-returning languages, the complexity bounds can
be met with either binary or ternary witnesses [9]. However, to meet the bound
for the size of the syntactic semigroup, our most complex stream is forced to use
an alphabet that grows quadratically in size.
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Let Qn = {0, 1, . . . , n − 1}. For n > 2, let Nn denote the semigroup of
transformations of Qn such that it 6= 0 for all i ∈ Qn. We call Nn the full non-
returning semigroup of degree n. We will show that a minimal generating set for
Nn must have size

(

n

2

)

.

Proposition 1. If G is a generating set for Nn, then G contains a transforma-
tion of type {i, j} for each set {i, j} ⊆ Qn. In particular, a minimal generating
set has exactly one element of type {i, j} for each {i, j} ⊆ Qn, and there are

(

n
2

)

such elements.

Proof. Suppose t is a transformation of type {i, j}, and let t′ be an arbitrary
transformation. If tt′ has rank n−1, then tt′ has type {i, j}. Indeed, since it = jt,
it follows that itt′ = jtt′. Thus composing a transformation of type {i, j} with
an arbitrary transformation either preserves the type, or lowers the rank.

Now, suppose G generates Nn. Observe that Nn does not contain transfor-
mations of rank n, since such transformations necessarily map some element to
0. Since composition with a transformation of type {i, j} either preserves type or
lowers rank, the semigroup generated by G contains only transformations that
either have the same type as some element of G, or have rank less than n − 1
and so are typeless. But Nn contains a transformation of type {i, j} for each
{i, j} ⊆ Qn. So if G generates Nn, then G must contain an element of type {i, j}
for each {i, j} ⊆ Qn. ⊓⊔

This gives a necessary condition for G to generateNn. Now we give a sufficient
condition.

Proposition 2. Let G be a subset of Nn that contains a transformation of type
{i, j} for each set {i, j} ⊆ Qn. Let G′ be obtained by restricting every transfor-
mation in G to Qn \ {0}. If G′ generates the symmetric group on Qn \ {0}, then
G generates Nn.

Proof. First, we show that G′ in fact generates the full transformation semigroup
on Qn \ {0}. Recall that the full transformation semigroup on X is generated by
the symmetric group on X together with a transformation of X of rank |X | − 1.
By assumption, G′ contains generators of the symmetric group on Qn \ {0}.
Transformations in G of type {i, j} with 0 < i, j have rank n−1, and furthermore
their restrictions to Qn\{0} are of rank n−2. Thus G′ contains generators of the
symmetric group on Qn\{0}, as well as a transformation of rank |Qn\{0}|−1 =
n−2; it follows that G′ generates the full transformation semigroup on Qn \{0}.

Now, we prove that G generates every transformation in Nn. Let t be an
element of Nn; we want to show that t is in the semigroup generated by G. Since
Nn does not contain any transformations of rank n, the transformation t has
rank less than n, and thus there exist distinct i, j ∈ Qn such that it = jt. Select
a transformation s of type {i, j} in G. Then for distinct q, q′ ∈ Qn, we have
qs = q′s if and only if {q, q′} = {i, j}.

Hence there is a well-defined transformation r′ of Qn\{0} given by (qs)r′ = qt
for all q ∈ Q; it is well-defined since if we have qs = q′s, then {q, q′} = {i, j} and
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is and js get mapped to a common element it = jt. The transformation r′ lies
in the full transformation semigroup on Qn \ {0}, and so it is in the semigroup
generated by G′. Hence there is some transformation r of Qn in the semigroup
generated by G such that r is equal to r′ when restricted to Qn \ {0}.

Since qs ∈ Qn \ {0} for all q ∈ Qn, it follows that (qs)r = (qs)r′ = qt for all
q ∈ Qn, and thus sr and t are equal as transformations. Since s is in G and r is
in the semigroup generated by G, it follows sr = t is in the semigroup generated
by G. Thus the semigroup generated by G contains all elements of Nn; but G is
a subset of Nn, so G generates Nn. ⊓⊔

5 Number and Complexities of Atoms

Denote the complement of a language L by L = Σ∗ \L. Let Qn = {0, . . . , n− 1}
and let Ln be a non-empty regular language with quotients K = {K0, . . . ,Kn−1}.
Each subset S of Qn defines an atomic intersection AS =

⋂

i∈S Ki ∩
⋂

i∈S Ki,

where S = Qn \ S. An atom of L is a non-empty atomic intersection; this
definition is equivalent to that given in Section 2 in terms of a left congruence.
Note that if S 6= T , then AS ∩ AT = ∅; hence atoms corresponding to distinct
subsets of Qn are disjoint. A language of complexity n can have at most 2n atoms,
since there are 2n subsets of Q. We show that this bound can be met by non-
returning languages. Additionally, we derive upper bounds on the complexities
of atoms of non-returning languages, and show that our most complex stream
meets these bounds.

We now describe a construction due to Iván [11]. Let L be a regular lan-
guage with DFA D = (Q,Σ, δ, q0, F ). For each S ⊆ Q, we define a DFA
DS = (QS , Σ,∆, (S, S), FS) as follows.

– QS = {(X,Y ) : X,Y ⊆ Q,X ∩ Y = ∅} ∪ {⊥}. State ⊥ is the sink state.
– ∆((X,Y ), a) = (Xa, Y a) if Xa ∩ Y a = ∅, and otherwise ∆((X,Y ), a) = ⊥;

also ∆(⊥, a) = ⊥.
– FS = {(X,Y ) : X ⊆ F, Y ⊆ F}.

The DFA DS recognizes the atomic intersection AS of L; if it recognizes a non-
empty language, then AS is an atom. We can determine the complexity of AS

by counting reachable and distinguishable states in DS .

5.1 Number of Atoms

Proposition 3. The language Ln = Ln(a, b, c) has 2n atoms.

Proof. We want to show that AS is an atom of Ln for all S ⊆ Qn. It suffices
to show for each S that the DFA DS recognizes at least one word. Then since
atoms corresponding to different subsets of Qn are disjoint, this proves there are
2n distinct atoms.

First, we show that from the initial state (S, S), we can reach some state
of the form (X,Y ) where 0 6∈ X and 0 6∈ Y . Consider the set {0, 1, n − 1}.
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Notice that for each subset {i, j} of {0, 1, n − 1}, we have a transformation of
type {i, j}: a has type {0, n − 1}, b has type {0, 1}, and c has type {1, n − 1}.
Additionally, by the pigeonhole principle, either S contains two distinct elements
from {0, 1, n− 1}, or S contains two distinct elements from {0, 1, n− 1}.

Suppose without loss of generality it is S which contains two distinct elements
from {0, 1, n− 1}. Let {i, j} ⊆ S for some {i, j} ⊆ {0, 1, n− 1} with i 6= j. Let
σ ∈ Σ be the letter inducing the transformation of type {i, j}. Then we claim
(S, S)σ 6= ⊥. Indeed, suppose that q ∈ Sσ∩Sσ. Then since σ is a transformation
of type {i, j}, we must have iσ = jσ = q, and no other element is mapped to q.
But {i, j} ⊆ S, so we cannot have q ∈ Sσ.

Hence Sσ ∩Sσ = ∅. Furthermore, since σ is a non-returning transformation,
we have 0 6∈ Sσ and 0 6∈ Sσ. Thus starting from the initial state (S, S), we can
apply σ to reach a state of the form (X,Y ) with 0 6∈ X and 0 6∈ Y .

Now, recall that the three transformations {a, b, c}, when restricted to Qn \
{0}, generate all transformations of Qn \ {0}. Since X ⊆ Qn \ {0}, there exists
a transformation of Qn \ {0} that maps every element of X to n− 1 and every
element of (Qn \ {0}) \ X to 1. Let w ∈ {a, b, c}∗ be a word that induces this
transformation when restricted to Qn \{0}. Since Y ⊆ Qn \{0} and Y is disjoint
from X , it follows that w maps every element of Y to 1. Since Fn = {n− 1} is
the final state set of Dn, we see that Xw ⊆ Fn and Y w ⊆ Fn. Thus (Xw, Y w) =
({n− 1}, {1}) is a final state of DS .

This shows that there exists a word σw ∈ {a, b, c}∗ that maps the initial
state (S, S) of DS to a final state. Thus AS is an atom. ⊓⊔

Next, we prove that the bound on number of atoms cannot be met by a binary
witness. From [7] we know that the number of atoms of a regular language is
equal to the state complexity of the reversal of the language. Hence this also
proves a conjecture from [9], that a ternary witness is necessary to meet the
bound for reversal of non-returning languages.

Proposition 4. Let L be a non-returning language of complexity n over Σ =
{a, b}. Then the number of atoms of L is strictly less than 2n.

Proof. Let D be the minimal DFA of L, with state set Qn. We introduce some
special terminology for this proof, which generalizes the notion of transforma-
tions of type {i, j}. We say that a transformation t unifies i and j, or unifies
the set {i, j}, if it = jt. For example, transformations of type {i, j} unify {i, j}.
But furthermore, every transformation of Qn of rank n − 1 or less unifies at
least one pair of elements of Qn. The transition semigroup of D cannot have
transformations of rank n, since L is non-returning; thus all the transformations
in the transition semigroup must unify some pair of states.

Suppose that in D, the letter a induces a transformation that unifies {i, j},
and b induces a transformation that unifies {k, ℓ}. Assume also that i 6= j and
k 6= ℓ. We will show that at least one atomic intersection AS of L is empty, and
thus is not an atom.

Suppose {i, j} = {k, ℓ}. Let S = {i} and consider the atomic intersection
AS . The initial state of the DFA for AS is ({i}, S). Note that j ∈ S, so ja ∈ Sa.
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But a unifies i and j, so ja = ia ∈ {i}a. Thus since {i}a ∩ Sa 6= ∅, the letter a
sends the initial state ({i}, S) to the sink state. Since b also unifies i and j, the
letter b also sends ({i}, S) to the sink state. Thus AS is non-empty if and only
if ({i}, S) is a final state. In fact, either AS is non-empty or AS = {ε}, since
every non-empty word sends the initial state ({i}, S) to the sink state. If we let
T = {j}, the same argument shows that AT is either empty or AT = {ε}. But
AS ∩ AT = ∅, so one of AS or AT must be empty.

Now, suppose {i, j} ∩ {k, ℓ} = ∅. Let S = {i, k} and consider the atomic
intersection AS . The initial state of the DFA for AS is ({i, k}, S) with j, ℓ ∈
S. Thus similarly to before, the transformation a which unifies {i, j} and the
transformation b which unifies {k, ℓ} both send AS to a sink state. So either AS

is empty or AS = {ε}. For T = {j, ℓ}, the same argument shows that either AT

is empty or AT = {ε}. Hence as before, one of AS or AT is empty.
Finally, suppose {i, j}∩{k, ℓ} has exactly one element. Then either k ∈ {i, j}

or ℓ ∈ {i, j}. Assume without loss of generality that ℓ ∈ {i, j} and ℓ = i;
otherwise rename the elements so this is the case. Then a unifies {i, j}, and b
unifies {i, k}. Let S = {i} and consider AS . As before, the initial state of the
DFA for AS is sent to a sink state by both a and b. Thus either AS is empty or
AS = {ε}. For T = {j, k}, the same argument shows that either AT is empty or
AT = {ε}. Hence one of AS or AT is empty. ⊓⊔

5.2 Complexity of Atoms

First, we derive upper bounds for the complexity of atoms of non-returning
languages.

Proposition 5. Let L be a non-returning language of complexity n, and let Qn

be the state set of its minimal DFA. Let S ⊆ Qn; then we have

κ(AS) 6

{

2n−1, if S ∈ {∅, Qn};

2 +
∑|S|

x=1

∑|S|
y=1

(

n−1
x

)(

n−1−x

y

)

, if ∅ ( S ( Qn.

Proof. To obtain an upper bound on the complexity of the atomic intersection
AS , we find an upper bound on the number of reachable states in the DFA DS .

Let S = ∅; then the initial state of DS is (∅, Qn). From this state, we can
only reach states of the form (∅, X) with X ⊆ Qn \ {0} and X non-empty. The
fact that 0 6∈ X follows from the non-returning property. There are 2n−1 − 1
non-empty subsets of Qn \ {0}; adding 1 for the initial state gives the upper
bound of 2n−1. For S = Qn we use a symmetric argument. Note that if S = ∅
or S = Qn, the sink state ⊥ is not reachable in DS .

Now suppose S 6= ∅ and S 6= Qn. The initial state of DS is (S, S). By the
non-returning property, this is the only state (X,Y ) of DS that has 0 ∈ X or
0 ∈ Y . Hence all non-initial, non-sink reachable states have the form (X,Y )
where 1 6 |X | 6 |S|, 1 6 |Y | 6 |S| = n− |S|, X ∩ Y = ∅, 0 6∈ X , and 0 6∈ Y .

Suppose |X | = x. There are
(

n−1
x

)

subsets of Qn \ {0} of size x. Given a
subset X , if we want to choose a set Y ⊆ Qn \ {0} which has size y and is
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disjoint from X , there are
(

n−1−x

y

)

choices: we must choose y elements from

Qn \{0}, but we cannot choose any of the x elements from X , so there are really
n − 1 − x options to choose from. Hence the number of non-initial, non-sink
reachable states (X,Y ) with |X | = x and |Y | = y is bounded by

(

n− 1

x

)(

n− 1− x

y

)

.

Since |X | can range from 1 to |S| and |Y | can range from 1 to n−|S|, we take the
sum over thse ranges to get a bound on the total number of non-initial, non-sink
reachable states:

|S|
∑

x=1

n−|S|
∑

y=1

(

n− 1

x

)(

n− 1− x

y

)

.

Finally, add 2 for the initial and sink states. This gives the stated bound. ⊓⊔

Next, we prove our witness meets these bounds. First, we recall a lemma
from [4].

Lemma 1. Let L be a regular language, and let DS be the DFA of the atomic
intersection AS of L. Then:

1. States (X,Y ) and (X ′, Y ′) of DS are distinguishable if X 6= X ′ and AX , AX′

are both atoms of L, or if Y 6= Y ′ and AY , AY ′ are both atoms of L.
2. If one of AX or AY is an atom of L, then (X,Y ) is distinguishable from ⊥.

Proposition 6. The atoms of the language Ln = Ln(Σ) meet the complexity
bounds of Proposition 5.

Proof. By Proposition 3, AS is an atom of Ln for each S ⊆ Qn. Thus by Lemma
1, for each S ⊆ Qn, all distinct states of DS are distinguishable. So it suffices to
just show that the number of reachable states of each atom AS meets the bound.
Recall that the transformations in Σ generate the full non-returning semigroup
Nn, which contains all transformations of Qn that do not map anything to 0.

Suppose S = ∅. The initial state of DS is (∅, Qn). We claim that (∅, X) is
reachable for all non-empty X ⊆ Qn \ {0}. Indeed, just let w ∈ Σ∗ induce a
transformation that maps Qn onto X ; then (∅, Qn)w = (∅, X). Hence there are
2n−1 reachable states. A symmetric argument works for S = Qn.

Suppose S 6= ∅ and S 6= Qn. We see from the proof of Proposition 5 that to
show that the number of reachable states of DS meets the bound, it suffices to
show that every state (X,Y ) with 1 6 |X | 6 |S|, 1 6 |Y | 6 |S|, X ∩ Y , 0 6∈ X ,
and 0 6∈ Y is reachable, in addition to the sink state ⊥. The sink state can be
reached from the initial state (S, S) using a constant transformation. To reach
(X,Y ), simply use a transformation that maps S onto X and S onto Y ; this is
possible since X and Y are disjoint, and also since X,Y ⊆ Qn \ {0} and we have
all transformations of Qn that do not map anything to 0. Hence the number of
reachable states matches the bound. ⊓⊔
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We used the full alphabet of our witness in the previous proof. The following
proposition shows that this was necessary.

Proposition 7. Let L be a non-returning language over Σ of complexity n. If
the atoms of L meet the bounds of Proposition 5, then Σ has size at least

(

n
2

)

.

Proof. We claim that to meet the bounds, Σ must contain a letter inducing a
transformation of type {i, j} for each {i, j} ⊆ Qn. There are

(

n
2

)

of these subsets.
To see this, fix {i, j} and suppose no letter induces a transformation of type

{i, j}. Then the transition semigroup of the minimal DFA of L does not contain
a transformation of type {i, j}, since there is no transformation of this type in
its generating set.

Now, let S = {i, j} and consider the atomic intersection AS . The initial state
of the DFA for this atomic intersection is ({i, j}, {i, j}). From this state, there
is no way to reach a state of the form (X,Y ) with |X | = 1 and |Y | = n − 2,
since this would require a transformation of type {i, j}. Hence AS cannot have
maximal complexity. ⊓⊔

6 Star

Proposition 8 (Star). Let Dn(a, b) be the DFA of Definition 1 and let Ln(a, b)
be its language. Then the complexity of (Ln(a, b))

∗ is 2n−1.

Proof. The upper bound of 2n−1 on the complexity of star was established in [9].
We use the construction of [9] for an NFA for (Ln(a, b))

∗ as shown in Figure 3:
state 0 has been made final and a b-transition has been added from state n− 1
to state 2.

0 1 2 . . .3 n− 1
a

a

b

a, b

b
a a a

b

b b

Fig. 3. NFA for star of Ln(a, b).

State {0} is initial and for q ∈ {1, . . . , n− 1}, the set {q} is reachable by aq.
We prove by induction on the size of the set that all nonempty subsets of

{1, . . . , n − 1} are reachable. We can think about the elements of the set S =
{q1, . . . , qk}, 1 6 q1 < · · · < qk 6 n− 1, as a pattern of states that are in the set.
Applying a adds 1 to each state or moves the pattern one position to the right
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cyclically. Applying an−2 subtracts 1 from each state, or moves the pattern one
position to the left cyclically.

1. qk < n − 1. To reach set S = {q1, . . . , qk}, start with set T = {q2, . . . , qk},
which is reachable by the induction assumption. Note that q2 > 2. Apply
an−1−qk so that the pattern is shifted to the right until qk reaches n−1. Use
b to add 2. Now we have the required k elements, but the distance between 2
and q2 +n− 1− qk may be larger than that between q1 and q2. It cannot be
smaller because n− 1 > qk − q1+2, and so (q2 +(n− 1− qk))− 2 > q2 − q1.

If q2+(n−1−qk)−2 = q2−q1, then the distance between 2 and q2+(n−1−qk)
is equal to the distance between q1 and q2. Thus we reach S if we shift the
pattern by a word in a∗ that sends 2 to q1.

Otherwise, we have q2+(n−1−qk)−2 > q2−q1, that is, n−1 > qk−q1+2.
Use an−1 to move the pattern, including 2, to the left one position. Since
q2 > q1+1, we have n−1 > qk−q2+3 and q2+(n−1−qk)−1 > 2. Now use
b to move 1 to 2. This decreases the distance between 2 and q2+(n− 1− qk)
by one. This can be repeated. If we reach the pattern in which we have 2,
and q2 + (n − 1 − qk) has been moved to 3, then we are done, because the
distance between q2 and q1 must be at least one.

2. q1 > 1, qk = n− 1. A shift to the left by an−2 brings us to Case (1). After
reaching {q1 − 1, . . . , qk − 1}, the desired set can be reached by a.

3. q1 = 1, q2 = 2, qk = n − 1. Use {q2 = 2, q3, . . . , qk−1, qk = n − 1}
b

−→
{1, 2, q3, . . . , qk−1, qk = n− 1}.

4. q1 = 1, q2 > 2, qk−1 = n − 2, qk = n − 1. Applying a we get a pattern with
{q1 = 1, q2 = 2, q3, . . . , qk = n − 1}. This is reachable by Case (3). The
desired pattern is then reached by an−2.

5. q1 = 1, q2 > 2, qk−1 < n − 2, qk = n − 1. We have {1, q2, . . . , n − 1}
a

−→
{1, 2, q2 +1, . . . , qk−1 +1}. The latter set is reachable by Case (1), and then
the desired set, by an−2.

For distinguishability, {0} is the only set with an−1 as its shortest accepted
non-empty word. If two subsets of {1, . . . , n− 1} differ by state q, then an−1−q

distinguishes them. Thus our claim holds. ⊓⊔

7 Product

When dealing with binary operations, to avoid confusion between the sets of
states {0, . . . ,m− 1} and {0, . . . , n− 1} we use D′

m(Σ) = (Q′
m, Σ, δ′m, 0′, {(m−

1)′}), and Dn(Σ) = (Qn, Σ, δn, 0, {n− 1}), where Q′
m = {0′, . . . , (m− 1)′}.

Proposition 9 (Restricted Product). Let Dn(a, b, c) be the DFA of Defini-
tion 1 and let Ln(a, b, c) be its language. Then for m,n > 4 the complexity of
L′
m(a, b)Ln(a,−, b) is (m− 1)2n−1 + 1.

The language Ln(a,−, b) is recognized by the DFA Dn(a,−, b). This DFA has
alphabet {a, b} and transformations a : (1, . . . , n− 1)(0 → 1) and b : (2, . . . , n−
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1)(1 → 2)(0 → 1). That is, b induces the same transformation in Dn(a,−, b)
that c induces in Dn(a, b, c).

We first establish a lemma.

Lemma 2. Let a : (1, . . . , n − 1)(0 → 1) and b : (2, . . . , n − 1)(1 → 2)(0 → 1).
Each element of {1+2k, . . . , n−1} has exactly one inverse under the transforma-
tion (ab)k, and the inverse of q is q−2k. In particular, if S ⊆ {1+2k, . . . , n−1},
then S(ab)−k = {q − 2k : q ∈ S}.

Proof. We proceed by induction on k. For k = 0, note that (ab)0 is the identity
transformation. Thus each q ∈ {1, . . . , n−1} has q−2k = q as its unique inverse
under (ab)0.

Now, assume k > 1 and the result holds for all values less than k. Suppose
p(ab)k = q, that is, p is an inverse of q under (ab)k. By the induction hypothesis,
q has a unique inverse under (ab)k−1, and this inverse is q − 2(k − 1). Thus
p(ab) = q(ab)−(k−1) = q − 2(k − 1). Now, since 1 + 2k 6 q 6 n − 1 and k > 1,
we have 3 6 q − 2(k − 1) 6 n− 1. Since b is a transformation of type {1, n− 1}
and 1b = (n − 1)b = 2, the only element that does not have a unique inverse
under b is 2. Thus q − 2(k − 1) has a unique inverse under b, and this inverse is
q− 2(k− 1)− 1. We have 2 6 q− 2(k− 1)− 1 6 n− 2. Since a is a permutation
when restricted to {1, . . . , n − 1}, it follows that q − 2(k − 1) − 1 has a unique
inverse under a, and this inverse is q− 2(k− 1)− 2 = q− 2k. Thus we must have
p = q − 2k. ⊓⊔

Proof (Proposition 9).
The upper bound of (m − 1)2n−1 + 1 was established in [9]. The NFA con-

struction that was used in [9] for the product is shown in Figure 4. State 0
can be omitted and its transitions replaced by appropriate transitions from the
final state of D′

m to states 1, 2 and n − 1. We will show that {0′} and all
subsets of the form {p′} ∪ S, where p′ ∈ Q′

m \ {0′} = {1′, . . . , (m − 1)′} and
S ⊆ Qn \ {0} = {1, . . . , n− 1}, are reachable and pairwise distinguishable.

Set {0′} is the initial state, and {p′} is reached by ap. Hence our claim holds
for |S| = 0. Next, we prove the claim for sets {p′}∪S with |S| = 1. First consider
sets of the form {1′, q}, q ∈ Qn \ {0}.

– First note that {1′}
am−1

−→ {1′, 1}.

– We have {1′, q}
a

−→ {2′, q + 1}
b

−→ {1′, q + 2} for q+ 2 6 n− 1. By starting
from {1′, 1} and repeatedly applying ab, we can reach all sets {1′, q} with q
odd.

– If n− 1 is odd, we can reach {1′, n− 1} and then {1′, n− 1}
a

−→ {2′, 1}
b

−→
{1′, 2}. Then by repeatedly applying ab we reach all sets {1′, q} with q even,
and we are done.

– If n−1 is even, n−2 is odd, so we can reach {1′, n−2}. Then {1′, n−2}
b

−→

{2′, n − 1}
b

−→ {1′, 2}. By repeatedly applying ab we reach all sets {1′, q}
with q even.
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0′ 1′ 2′ . . .3′ (m− 1)′
a

a

a, b

b
a a a

b

b b

1 2 . . .3 n− 1

a

b

a, b a, b a, b a, b

a, b

Fig. 4. NFAs for product of L′

m
(a, b) and Ln(a,−, b) .

Now, note that a restricted to Qn \ {0} is a permutation, so each q ∈ Qn \ {0}
has an inverse under a. We can reach {1′, qa−(p−1)} and then by ap−1 we reach
{p′, q}. Thus {p′, q} is reachable for each p′ ∈ Q′

m \ {0′} and q ∈ Qn \ {0}.

We prove the claim for the remaining sets {p′} ∪ S by induction, taking the
case |S| = 1 as our base case. Suppose |S| > 1, and suppose {p′}∪T is reachable
whenever p′ ∈ Q′

m \{0′} and |T | < |S|. We refer to this as the primary induction
hypothesis, and the claim as the primary claim, since we will need to do another
inductive proof within this proof.

First we consider the case where p′ = 1′. Our argument for this case will
be split into sub-cases based on the smallest element of S. If 1 is the smallest
element of S, then by the primary induction hypothesis, we can reach {1′} ∪ T

for T = (S \ {1})a−(m−1). Thus {1′} ∪ T
am−1

−→ {1′, 1} ∪ (S \ {1}) = {1′} ∪ S is
reachable.

Suppose q = 1 + 2k is the smallest element of S. By Lemma 2, since S ⊆
{1 + 2k, . . . , n− 1}, each element of S has an unique inverse under (ab)k. Thus
the size of S(ab)−k has the same size as S. Furthermore, q − 2k = 1 is the
inverse of q under (ab)k, and thus 1 ∈ S(ab)−k. In particular, 1 is the smallest
element of S(ab)−k, so we can reach {1′}∪S(ab)−k. Also, 1′ is fixed by ab. Thus

{1′} ∪ S(ab)−k (ab)k

−→ {1′} ∪ S is reachable.

This shows {1′} ∪ S is reachable whenever the smallest element of S is odd.
We deal with the case where the smallest element of S is even in two steps.
First, we reduce to the case where S contains at least one odd element. Assume
that {1′} ∪ T is reachable whenever T contains at least one odd element and
|T | 6 |S|, and assume S contains no odd elements. Let q = 2s be the smallest
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element of S. Observe that S \ {q} ⊆ {1 + 2s, . . . , n− 1} and thus by Lemma 2,
the set (S \ {q})(ab)−s has the same size as S \ {q}.

If n − 1 is odd, we can reach {1′, n − 1} ∪ (S \ {q})(ab)−s, since {n − 1} ∪
(S \ {q})(ab)−s has the same size as S and contains an odd element. Then since

n− 1
ab
−→ 2

(ab)s−1

−→ 2 + 2(s− 1) = 2s = q, applying (ab)s gives {1′} ∪ S.

If n− 1 is even, we can reach {1′, n − 2} ∪ (S \ {q})(ab)−s. Since n− 2
a

−→

n − 1
b

−→ 2, we have n − 2
ab
−→ 2

(ab)s−1

−→ 2s = q and thus applying (ab)s gives
{1′} ∪ S.

Finally, we deal with the case where S contains at least one odd element.
Let p be the smallest odd element of S. Let T = {q ∈ S : p 6 q}, the set of
elements above (and including) the smallest odd element. Thus S \ T is the set
of elements of S that are strictly below the smallest odd element (in particular,
each element of S \ T is even). We prove that {1′} ∪ S is reachable by induction
on the size of S \ T . This is the secondary claim.

The base case is |S \T | = 0. Here every element of S is greater than or equal
to p. Thus we are in the case where the smallest element of S is odd, which we
have solved.

Suppose that whenever |S \T | < k, we can reach {1′}∪S. That is, whenever
there are fewer than k elements strictly below the smallest odd element of S, we
can reach {1′}∪S. This is the secondary induction hypothesis. We want to prove
the secondary claim holds when |S \ T | = k for k > 1.

Let r be the smallest element of S. Since k > 1, we have r ∈ S \ T and thus
r is even. Suppose r = 2s. Then S \ {r} ⊆ {1 + 2s, . . . , n− 1}, so by Lemma 2,
every element of S \ {r} has a unique inverse under (ab)s.

In S, the number of elements strictly below the smallest odd element is
|S \ T | = k. Say a set U is nice if the number of elements strictly below the
smallest odd element of U is strictly less than k. Consider the set S \ {r}. Since
r is strictly below the smallest odd element of S, it follows that S \ {r} is nice.
If we apply (ab)−s to S \ {r}, this simply subtracts 2s from every element of
S \ {r}, and so preserves parity. Thus (S \ {r})(ab)−s is also nice. Finally, if we
take the union (S \{r})(ab)−s∪{n−1}, this set is nice, since n−1 is the largest
element of this set and so cannot possibly be strictly below anything.

The secondary induction hypothesis says precisely that {1′}∪U is reachable
whenever U is nice. Thus {1′, n− 1} ∪ (S \ {r})(ab)−s is reachable. Notice that

n− 1
(ab)s

−→ 2s = r. Hence by (ab)s we reach {1′} ∪ S.

This proves the secondary claim. We have thus shown that if each state
{p′} ∪ T with |T | < |S| is reachable, then each state {1′} ∪ S is reachable. To
see that each {p′} ∪ S is reachable, reach {1′} ∪ Sa−(p−1) and apply ap−1 to
reach {p′} ∪ S. This completes the proof of the primary claim, and shows that
(m− 1)2n−1 + 1 states are reachable.

Now, we show that all reachable states are distinguishable. Let {p′} ∪ S and
{q′} ∪ T be two distinct states. Suppose S 6= T and suppose r ∈ S ⊕ T , the
symmetric difference of S and T . Then an−1−r distinguishes the states.
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Now suppose S = T and p′ 6= q′. Assume without loss of generality that
p < q. Define U = Sam−1−q. Then we have

{q′} ∪ S
am−1−q

−→ {(m− 1)′} ∪ U
b

−→ {(m− 1)′, 1} ∪ Ub.

Observe that (Qn \ {0})b = {2, . . . , n − 1}. Thus Ub ⊆ {2, . . . , n − 1} and in
particular, Ub ∩ {1} = ∅.

On the other hand, let r′ = (p+m−1− q)′. If we apply am−1−qb to {p′}∪S,
we reach

{p′} ∪ S
am−1−q

−→ {r′} ∪ U
b

−→ {r′}b ∪ Ub.

Note that since p < q, we have r = p+m− 1− q < m− 1. Hence b either fixes
r′, or if r′ ∈ {1′, 2′}, it swaps r′ with the other element of {1′, 2′}. In either case
r′b < m− 1. It follows that {r′}b = {r′b}.

Thus {p′} ∪ S is sent to {r′b} ∪ Ub by am−1−qb, and {q′} ∪ S is sent to
{(m−1)′}∪({1}∪Ub), with Ub∩{1} = ∅. These two states have different subsets
of Qn, so they are distinguishable. This proves that all states are distinguishable,
and hence the bound is met. ⊓⊔

Proposition 10 (Unrestricted Product). For m,n > 4, let L′
m (respectively,

Ln) be a non-returning language of complexity m (respectively, n) over an alpha-
bet Σ′, (respectively, Σ). Then the complexity of product is at most m2n+1 + 1,
and this bound is met by L′

m(a, b) and Ln(a,−, b, d).

Here Ln(a,−, b, d) is the language of DFA Dn(a,−, b, d) with transformations
a : (1, . . . , n − 1)(0 → 1), b : (2, . . . , n − 1)(1→2)(0→1) and d : (0→2). That is,
everything is the same as DFA Dn(a, b, c, d), except c is removed and b now
induces the transformation that c originally induced.

Proof. First we derive an upper bound; the derivation is similar to that for
regular languages [3]. Let D′

m = (Q′
m, Σ′, δ′, 0′, F ′) and Dn = (Qn, Σ, δ, 0, F )

be minimal DFAs of non-returning languages L′
m ⊆ (Σ′)∗ and Ln ⊆ Σ∗, re-

spectively. We use the same construction as in the restricted case. As in that
case, we may possibly reach the initial state {0′} and (m − 1)2n−1 states us-
ing letters in Σ′ ∩ Σ. But starting in any set of the form {p′} ∪ S, where
S ⊆ {1, . . . , n − 1}, and applying a letter from Σ \ Σ′ we may also reach S.
Hence at most (m− 1)2n−1 + 2n−1 + 1 = m2n−1 + 1 states can be reached.

Languages L′
m(a, b) and Ln(a,−, b, d) meet this bound. We can reach (m −

1)2n−1 + 1 states by words in {a, b}∗. From {p′} ∪ S, we can use d as described
above to reach S and thus reach 2n−1 more states. It remains to show that all
these states are distinguishable.

We will say a state is a Q′
m-state if it contains an element of Q′

m, and a
Qn-state otherwise. The reachable Q′

m-states have the form {p′} ∪ S with p′ ∈
Q′

m \ {0′} and S ⊆ Qn. The reachable Qn-states have the form S ⊆ Qn.
All Q′

m-states are all pairwise distinguishable using words over {a, b}∗, using
the same arguments as the restricted case. Given two distinct Qn-states S and
T , we can take r ∈ S ⊕ T and distinguish the states using an−1−r, as in the
restricted case.
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Now let {p′} ∪ S be a Q′
m-state and let T be a Qn-state. If S 6= T , we can

take r ∈ S⊕T and use an−1−r to distinguish. If S = T , let U = Sam−1−p so that

{p′}∪S
am−1−p

−→ {(m−1)′}∪U
b

−→ {(m−1)′, 1}∪Ub. As in the restricted case, we
have Ub ⊆ {2, . . . , n− 1}. So am−1−pb sends {p′}∪S to {(m− 1)′}∪ ({1}∪Ub),
with Ub ∩ {1} = ∅, but it sends S simply to Ub. These two states have different
subsets of Qn, so they are distinguishable.

So all Q′
m states are pairwise distinguishable, all Qn-states are pairwise dis-

tinguishable, and all Q′
m-states are distinguishable from all Qn-states; hence all

states are distinguishable. ⊓⊔

8 Boolean Operations

Proposition 11 (Restricted Boolean Operations). Let Dn(a, b) be the DFA
of Definition 1 and let Ln(a, b) be its language. Then for m,n > 4 and for
any proper binary boolean operation ◦ the complexity of L′

m(a, b) ◦ Ln(b, a) is
mn− (m+ n− 2). If m 6= n then κ(L′

m(a, b) ◦ Ln(a, b)) = mn− (m+ n− 2).

Proof. The upper bound was established in [9]. For the lower bound, Figure 5
shows the two argument DFAs. As usual we construct their direct product. State
(0′, 0) is initial and can never be reached again. If we apply a, we reach state
(1′, 2), and the states reachable from this state form the direct product of DFA
E ′
m−1(a, b) = ({1, . . . , (m − 1)′}, {a, b}, δ′, 1′, {(m − 1)′}) and DFA En−1(b, a) =

({1, . . . , n − 1}, {a, b}, δ, 2, {n − 1}), where δ′ and δ are δm′ and δn restricted
to Q′

m \ {0′} and Qn \ {0}. Since the transition semigroups of E ′
m and En are

the symmetric groups Sm and Sn, respectively, the result from [1, Theorem 1]
applies, except in the cases where (m,n) is in {(4, 5), (5, 4), (5, 5)}, which have
been verified by computation. Our first claim follows for the remaining cases
by [1, Theorem 1]. If m 6= n, [1, Theorem 1] applies to D′

m(a, b) and Dn(a, b),
and the second claim follows. In both cases the direct product of E ′

m and En
has (m − 1)(n− 1) states; hence in the direct product of D′

m and Dn there are
(m− 1)(n− 1)+ 1 = mn− (m+n− 2) states. By [1, Theorem 1] all these states
are reachable and pairwise distinguishable for every proper operation ◦.

Finally, note also that (0′, 0) is distinguishable from all other states. Since
(0′, 0)a = (1′, 2) and (1′, 2)a−1 = {(m−1)′, 1)}, we see that (0′, 0) is distinguish-
able from (p′, q) 6= ((m − 1)′, 1) by first applying a, then applying a word that
distinguishes (0′, 0)a = (1′, 2) from (p′, q)a. It is distinguishable from ((m−1)′, 1)
by first applying b, then applying a word that distinguishes (0′, 0)b = (2′, 1) from
((m− 1)′, 1)b = ((m− 1)′, 2). ⊓⊔

Proposition 12 ((Unrestricted Boolean Operations)). For m,n > 4, let
L′
m(Σ′) (respectively, Ln(Σ)) be a non-returning language of complexity m (re-

spectively, n) over an alphabet Σ′, (respectively, Σ). Then the complexity of
union and symmetric difference is mn+ 1 and this bound is met by L′

m(a, b, c)
and Ln(b, a, d); the complexity of difference is mn−n+1, and this bound is met
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Fig. 5. DFAs D′

m
(a, b) and Dn(b, a) for boolean operations.

by L′
m(a, b, c) and Ln(b, a); the complexity of intersection is mn − (m + n − 2)

and this bound is met by L′
m(a, b) and Ln(b, a).

Proof. First we derive upper bounds for four boolean operations. Let D′
m(Σ′) =

(Q′
m, Σ′, δ′m, 0′, F ′) and Dn(Σ) = (Qn, Σ, δn, 0, F ) be minimal DFAs for non-

returning languages L′
m(Σ′) and Ln(Σ) of complexity m and n, respectively.

Assume that Σ′ \ Σ and Σ \ Σ′ are non-empty; this assumption leads to the
largest upper bound. We add an empty state ∅′ to D′

m to send all transitions
under the letters from Σ \ Σ′ to that state; thus we get an (m + 1)-state DFA
D′

m,∅′ . Similarly, we add an empty state ∅ to Dn to get Dn,∅. Now we construct

the direct product of D′
m,∅′ and Dn,∅. There are at most (m + 1)(n + 1) states

in this direct product. Note, however, that the m states of the form (p′, 0),
p 6= 0, and the n states of the form (0′, q), q 6= 0 are not reachable. Thus we
have an upper bound of (m + 1)(n + 1) − (m + n) = mn + 1. We will show
that this bound can be reached for union and symmetric difference. However,
the alphabet of the difference L′

m,∅′ \ Ln,∅ is Σ′ and states of the form (∅′, q),

q ∈ {1, . . . , n − 1} ∪ {∅}, which are reachable only by letters in Σ \ Σ′, are
not reachable in the difference DFA. Hence the bound reduces to mn − n + 1.
Similarly, the alphabet of the intersection L′

m,∅′ ∩ Ln,∅ is Σ′ ∩ Σ and states of

the form (p′, ∅), p ∈ {1′, . . . , (m− 1)′} ∪ {∅′}, (∅′, q), q ∈ {1, . . . , n− 1}∪ {∅} are
not reachable. Hence the bound reduces to mn− (m+n− 2), which is the same
as the bound in the restricted case.

We now claim that our witnesses of Figure 6 meet this bound.
Union Consider the direct product of D′

m and Dn. State (0′, 0) is initial and
reaches (1′, 2) by a. By [1, Theorem 1] and computation in the cases where
(m,n) is in {(4, 5), (5, 4), (5, 5)} all (m − 1)(n − 1) states of the form (p′, q),
p′ 6∈ {0′, ∅′}, and q 6∈ {∅, 0} are reachable and pairwise distinguishable. The
states that have an empty component are reachable as follows: (∅′, 1) can reached

from any reachable state (q′, 1) by d, and (∅′, 1)
bq−1

−→ (∅′, q), for q = 1, . . . , n− 1.

The state (1′, ∅) is reached from (0′, 0) by c, and (1′, ∅)
ap−1

−→ (p′, ∅), for p =
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Fig. 6. DFAs D′

m
(a, b, c) and Dn(b, a, d) for unrestricted boolean operations.

1, . . . ,m− 1. Finally, (∅′, ∅) is reached from any state (∅′, q) by c. Thus we have
a total of 1 + (m− 1)(n− 1) + (m− 1) + (n− 1) + 1 = mn+ 1 states.

Let S = {(p′, q) | 1 6 p 6 m−1, 1 6 q 6 n−1}, V = {(p′, ∅) | 1 6 p 6 m−1},
and H = {(∅′, q) | 1 6 q 6 n − 1}. States in H are distinguishable by words in
b∗, and those in V , by words in a∗. State (∅′, ∅) is the only empty state; hence it
is distinguishable from every other reachable state. State (0′, 0) is distinguished
from every other reachable non-final state because only it accepts am−1. Non-
final states in H are distinguished from those in S and V by words in a∗. Non-
final states in V are distinguished from those in S by words in b∗. State (∅′, n−1)
is distinguished from ((m − 1)′, ∅) by d, and from final states in S by words in
ca∗. State ((m− 1)′, ∅) is distinguished from final states in S by words in db∗.

Symmetric Difference Now state ((m− 1)′, n− 1) is no longer final, but the
rest of the argument is the same as for union.

Difference Here states (p′, n − 1), p′ ∈ {1′, . . . , (m − 1)′} ∪ {∅′} are no longer
final. Since the alphabet of L′

m\Ln is Σ′, states in H are not reachable, and there
are only mn−n+1 reachable states. The states in S are pairwise distinguishable
by [1, Theorem 1] and those in V by the argument used for union. The arguments
used for union also apply here to distinguish states in S from those in V .

Intersection Now the alphabet of L′
m ∩Ln is Σ′ ∩Σ, and neither the states in

H nor those in V are reachable. The claim now follows by [1, Theorem 1]. ⊓⊔

The complexity of any other binary boolean operation can be determined
from the complexities of union, intersection, difference and symmetric difference;
however, the complexity of Lm ◦ L′

n may differ by 1 from the complexity of
Lm ◦ L′

n. For more details see [5].
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9 Conclusions

We have shown that there exists a most complex non-returning language stream
(L4(Σ), . . . , Ln(Σ), . . . ). The cardinality of the syntactic semigroup of Ln(Σ) is
(n − 1)n and its atoms are have the highest state complexity possible for non-
returning languages; both of these bounds can be reached only if Σ has at least
(

n
2

)

letters. The bounds for the common restricted operations, however, can be
met by streams over {a, b, c} or {a, b}: κ(Lm(a, b) ◦Ln(b, a) = mn− (m+n− 2)
for all proper boolean operations ◦; κ(Ln(a, b))

∗ = 2n−1; κ(Ln(a, b, c)
R) = 2n;

and κ(L′
m(a, b)Ln(a,−, b)) = (m − 1)2n−1 + 1. The bounds for unrestricted

boolean operations can be met by L′
m(a, b, c) and Ln(b, a, d), whereas those for

the unrestricted product, by L′
m(a, b) and Ln(a,−, b, d).
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