Abstract
Future energy grids and associated markets foster dynamic coalition formation in order to allow situational virtual power plant configurations. Collaboratively and distributed, such virtual power plants may take over responsibility on several emerging control tasks within the smart grid as a substitute for no longer available large plants. Temporary teamwork of individually owned and operated distributed energy resources demands for a proper and fair surplus distribution after product delivery. Distributing the surplus merely based on the absolute (load) contribution does not take into account that smaller units maybe provide the means for fine grained control as they are able to modify their load on a smaller scale. Bringing in flexibility, counts for several tasks. Shapley values provide a concept for the decision on how the generated total surplus of an agent coalition should be spread. In this paper, we propose a scheme for efficiently estimating computationally intractable Shapley values in a fully decentralized way. As a scheme to handle a set of different utility evaluation criteria we use weighted k-majority voting games. We demonstrate the applicability of the decentralized estimation by several simulation results in comparison with exact calculations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Awerbuch, S., Preston, A.M. (eds.): The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry Topics in Regulatory Economics and Policy. Topics in Regulatory Economics and Policy, vol. 26. Kluwer Academic Publishers, New York (1997)
Bachrach, Y., Markakis, E., Procaccia, A.D., Rosenschein, J.S., Saberi, A.: Approximating power indices. In: Padgham, L., Parkes, D.C., Müller, J.P., Parsons, S. (eds.) AAMAS, vol. 2, pp. 943–950. IFAAMAS (2008)
Beer, S.: Dynamic coalition formation in electricity markets. Ph.D. thesis (2017)
Bilbao, J., Fernndez, J., Jimnez, N., Lpez, J.: Voting power in the European union enlargement. Eur. J. Oper. Res. 143(1), 181–196 (2002)
Bremer, J., Lehnhoff, S.: Decentralized coalition formation in agent-based smart grid applications. In: Bajo, J., et al. (eds.) PAAMS 2016. CCIS, vol. 616, pp. 343–355. Springer, Cham (2016). doi:10.1007/978-3-319-39387-2_29
Bremer, J., Sonnenschein, M.: Constraint-handling for optimization with support vector surrogate models - a novel decoder approach. In: Filipe, J., Fred, A. (eds.) ICAART 2013 - Proceedings of the 5th International Conference on Agents and Artificial Intelligence, vol. 2, pp. 91–105. SciTePress, Barcelona (2013)
Bremer, J., Sonnenschein, M.: Estimating shapley values for fair profit distribution in power planning smart grid coalitions. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS (LNAI), vol. 8076, pp. 208–221. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40776-5_19
Chalkiadakis, G., Robu, V., Kota, R., Rogers, A., Jennings, N.: Cooperatives of distributed energy resources for efficient virtual power plants. In: The Tenth International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2011), 2–6 May 2011, pp. 787–794. http://eprints.soton.ac.uk/271950/
Champsaur, P.: How to share the cost of a public good? Int. J. Game Theory 4, 113–129 (1975)
Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts. Math. Oper. Res. 19(2), 257–266 (1994)
Elkind, E., Goldberg, L.A., Goldberg, P., Wooldridge, M.: On the dimensionality of voting games. In: In Proceedings of the Twenty Third AAAI Conference on Artificial Intelligence (AAAI-2008), pp. 13–17 (2008)
Fatima, S.S., Wooldridge, M., Jennings, N.R.: A linear approximation method for the shapley value. Artif. Intell. 172(14), 1673–1699 (2008)
Fatima, S., Wooldridge, M., Jennings, N.R.: A heuristic approximation method for the banzhaf index for voting games. Multiagent Grid Syst. 8(3), 257–274 (2012). http://dx.doi.org/10.3233/MGS-2012-0194
Friedman, E., Moulin, H.: Three methods to share joint costs or surplus. J. Econ. Theory 87(2), 275–312 (1999)
Hinrichs, C.: Selbstorganisierte Einsatzplanung dezentraler Akteure im smart grid. Ph.D. thesis (2014). http://oops.uni-oldenburg.de/1960/
Hinrichs, C., Bremer, J., Sonnenschein, M.: Distributed hybrid constraint handling in large scale virtual power plants. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe (ISGT Europe 2013). IEEE Power & Energy Society (2013)
Hsu, M.C., Soo, V.W.: Fairness in Cooperating Multi-agent Systems – Using Profit Sharing as an Example. In: Lukose, D., Shi, Z. (eds.) PRIMA 2005. LNCS, vol. 4078, pp. 153–162. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03339-1_13
Kahan, J., Rapoport, A.: Theories of coalition formation. Basic Studies in Human Behavior. L. Erlbaum Associates, London (1984)
Leech, D.: Computing power indices for large voting games. Manag. Sci. 49(6), 831–837 (2003). http://EconPapers.repec.org/RePEc:inm:ormnsc:v:49:y:2003:i:6:p:831–837
Liben-Nowell, D., Sharp, A., Wexler, T., Woods, K.: Computing shapley value in supermodular coalitional games. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 568–579. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32241-9_48
Lima, J., Pereira, M., Pereira, J.: An integrated framework for cost allocation in a multi-owned transmission-system. IEEE Trans. Power Syst. 10(2), 971–977 (1995)
Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. CoRR abs/1007.4063 (2010)
Ma, R., Chiu, D., Lui, J., Misra, V., Rubenstein, D.: Internet economics: the use of shapley value for ISP settlement. In: Proceedings of the 2007 ACM CoNEXT Conference, CoNEXT 2007, pp. 6:1–6:12. ACM, New York (2007)
Mann, I., Shapley, L.: Values of large games, iv: evaluating the electoral college by montecarlo techniques. Technical report, Santa Monica, CA: RAND Corporation (1960). http://www.rand.org/pubs/research_memoranda/RM2651
Mas-Colell, A.: Remarks on the game-theoretic analysis of a simple distribution of surplus problem. Int. J. Game Theory 9, 125–140 (1980)
Matsui, Y., Matsui, T.: NP-completeness for calculating power indices of weighted majority games. Theor. Comput. Sci. 263(1–2), 306–310 (2001)
McArthur, S., Davidson, E., Catterson, V., Dimeas, A., Hatziargyriou, N., Ponci, F., Funabashi, T.: Multi-agent systems for power engineering applications - Part I: concepts, approaches, and technical challenges. IEEE Trans. Power Syst. 22(4), 1743–1752 (2007)
Nieße, A., Sonnenschein, M.: Using grid related cluster schedule resemblance for energy rescheduling - goals and concepts for rescheduling of clusters in decentralized energy systems. In: Donnellan, B., Martins, J.F., Helfert, M., Krempels, K.H. (eds.) SMARTGREENS. pp. 22–31. SciTePress (2013)
Nieße, A., Lehnhoff, S., Tröschel, M., Uslar, M., Wissing, C., Appelrath, H.J., Sonnenschein, M.: Market-based self-organized provision of active power and ancillary services: an agent-based approach for smart distribution grids. In: Complexity in Engineering (COMPENG), 2012. pp. 1–5 (June 2012)
Nieße, A., Beer, S., Bremer, J., Hinrichs, C., Lünsdorf, O., Sonnenschein, M.: Conjoint dynamic aggregation and scheduling for dynamic virtual power plants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Federated Conference on Computer Science and Information Systems - FedCSIS 2014, Warsaw, Poland (9 2014)
Nikonowicz, Ł.B., Milewski, J.: Virtual power plants - general review: structure, application and optimization. J. Power Technol. 92(3), 135 (2012)
Osborne, M.J., Rubinstein, A.: A Course in Game Theory, 1st edn. The MIT Press, Cambridge (1994)
Owen, G.: Multilinear extension of games. Manag. Sci. 18(5–Part–2), 64–79 (1972)
Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the ‘smarts’ into the smart grid: a grand challenge for artificial intelligence. Commun. ACM 55(4), 86–97 (2012)
Rapoport, A.: N-Person Game Theory: Concepts and Applications. Ann Arbor science library, University of Michigan Press, Michigan (1970)
Saad, W., Han, Z., Poor, H.V., Basar, T.: Game theoretic methods for the smart grid. CoRR abs/1202.0452 (2012)
Sen, A.K.: Labour allocation in a cooperative enterprise. Rev. Econ. Stud. 33(4), 361–371 (1966)
Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2, 307–317 (1953)
Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)
Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)
Yen, J., Yan, Y.H., Wang, B.J., Sin, P.K.H., Wu, F.F.: Multi-agent coalition formation in power transmission planning. In: Hawaii International Conference on System Sciences, pp. 433–443 (1998)
Zlotkin, G., Rosenschein, J.S.: Coalition, cryptography, and stability: mechanisms for coalition formation in task oriented domains. In: Proceedings of the Eleventh National Conference on Artificial Intelligence, pp. 32–437. AAAI Press (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bremer, J., Lehnhoff, S. (2017). Decentralized Surplus Distribution Estimation with Weighted k-Majority Voting Games. In: Bajo, J., et al. Highlights of Practical Applications of Cyber-Physical Multi-Agent Systems. PAAMS 2017. Communications in Computer and Information Science, vol 722. Springer, Cham. https://doi.org/10.1007/978-3-319-60285-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-60285-1_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60284-4
Online ISBN: 978-3-319-60285-1
eBook Packages: Computer ScienceComputer Science (R0)