Abstract
With the ever decreasing attention span of contemporary Internet users, the title of online content (such as a news article or video) can be a major factor in determining its popularity. To take advantage of this phenomenon, we propose a new method based on a bidirectional Long Short-Term Memory (LSTM) neural network designed to predict the popularity of online content using only its title. We evaluate the proposed architecture on two distinct datasets of news articles and news videos distributed in social media that contain over 40,000 samples in total. On those datasets, our approach improves the performance over traditional shallow approaches by a margin of 15%. Additionally, we show that using pre-trained word vectors in the embedding layer improves the results of LSTM models, especially when the training set is small. To our knowledge, this is the first attempt of applying popularity prediction using only textual information from the title.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bandari, R., Asur, S., Huberman, B.A.: The pulse of news in social media: forecasting popularity. CoRR, abs/1202.0332 (2012)
Castillo, C., El-Haddad, M., Pfeffer, J., Stempeck, M.: Characterizing the life cycle of online news stories using social media reactions. In: CSCW (2014)
Chakraborty, A., Paranjape, B., Kakarla, S., Ganguly, N.: Stop clickbait: detecting and preventing clickbaits in online news media. CoRR, abs/1610.09786 (2016)
Chen, J., Song, X., Nie, L., Wang, X., Zhang, H., Chua, T.: Micro tells macro: predicting the popularity of micro-videos via a transductive model. In: ACMMM (2016)
Chesire, M., Wolman, A., Voelker, G., Levy, H.M.: Measurement and analysis of a streaming-media workload. In: USITS (2001)
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.: Natural language processing (almost) from scratch. CoRR, abs/1103.0398 (2011)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hong, L., Dan, O., Davison, B.: Predicting popular messages in Twitter. In: Proceedings of International Conference Companion on World Wide Web (2011)
Khosla, A., Sarma, A., Hamid, R.: What makes an image popular? In: WWW (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, abs/1412.6980 (2014)
Osborne, M., Lavrenko, V.: RT to win! predicting message propagation in Twitter. In: ICWSM (2011)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP) (2014)
Pinto, H., Almeida, J., Gonçalves, M.: Using early view patterns to predict the popularity of Youtube videos. In: WSDM (2013)
Ramisa, A., Yan, F., Moreno-Noguer, F., Mikolajczyk, K.: Breakingnews: article annotation by image and text processing. CoRR, abs/1603.07141 (2016)
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)
Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45, 2673–2681 (1997)
Szabo, G., Huberman, B.: Predicting the popularity of online content. Commun. ACM 53(8), 80–88 (2010)
Trzcinski, T., Rokita, P.: Predicting popularity of online videos using support vector regression. CoRR, abs/1510.06223 (2015)
Tsagkias, M., Weerkamp, W., de Rijke, M.: News comments: exploring, modeling, and online prediction. In: ECIR (2010)
Wang, S., Manning, C.: Baselines and bigrams: simple, good sentiment and topic classification. In: ACL (2012)
Zhang, X., LeCun, Y.: Text understanding from scratch. CoRR, abs/1502.01710 (2015)
Zhou, C., Sun, C., Liu, Z., Lau, F.C.M.: A C-LSTM neural network for text classification. CoRR, abs/1511.08630 (2015)
Acknowledgment
The authors would like to thank NowThisMedia Inc. for enabling this research by providing access to data and hardware.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Stokowiec, W., Trzciński, T., Wołk, K., Marasek, K., Rokita, P. (2017). Shallow Reading with Deep Learning: Predicting Popularity of Online Content Using only Its Title. In: Kryszkiewicz, M., Appice, A., Ślęzak, D., Rybinski, H., Skowron, A., Raś, Z. (eds) Foundations of Intelligent Systems. ISMIS 2017. Lecture Notes in Computer Science(), vol 10352. Springer, Cham. https://doi.org/10.1007/978-3-319-60438-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-60438-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60437-4
Online ISBN: 978-3-319-60438-1
eBook Packages: Computer ScienceComputer Science (R0)