Abstract
One of the main issues that have to be considered before the conception of context-aware recommender systems is the estimation of the relevance of contextual information. Indeed, not all user interests are the same in all contextual situations, especially for the case of a mobile environment. In this paper, we introduces a multi-dimensional context model for music recommender systems that solicits users’ perceptions to define the relationship between their judgment of items relevance and contextual dimensions. We have started by the acquisition of explicit items rating from a population in various possible contextual situations. Next, we have applied the Multi Linear Regression technique on users’ perceived ratings, to define an order of importance between contextual dimensions and generate the multi-dimensional context model. We summarized key results and discussed findings that can be used to build an effective mobile context-aware music recommender system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
An English version is available on http://goo.gl/forms/xroRPBH5qs.
References
Adomavicius, G., Jannach, D.: Preface to the special issue on context-aware recommender systems. User Model. User-Adap. Inter. 24, 1–5 (2014)
Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)
Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, New York (2011). doi:10.1007/978-0-387-85820-3_7
Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context relevance assessment and exploitation in mobile recommender systems. Pers. Ubiquitous Comput. 16(5), 507–526 (2012)
Braunhofer, M., Elahi, M., Ge, M., Ricci, F., Schievenin, T.: STS: design of weather-aware mobile recommender systems in tourism. In: Proceedings of AI*IA International Workshop on Intelligent User Interfaces, Turin, Italy, pp. 40–46 (2013)
Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)
Dey, A.K.: Providing architectural support for building context-aware applications. Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA, USA (2000)
Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley, New York (1998)
Ekman, P., Friesen, W.V.: The repertoire of nonverbal behavior: categories, origins, usage and coding. Semiotica 1(1), 49–98 (1969)
Hasan, S., Zhan, X., Ukkusuri, S.V.: Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In: Proceedings of International Workshop on Urban Computing, New York, NY, USA, pp. 1–8 (2013)
Jiang, S., Ferreira, J., Gonzlez, M.C.: Clustering daily patterns of human activities in the city. Data Min. Knowl. Discov. 25(3), 478–510 (2012)
Schedl, M., Knees, P., McFee, B., Bogdanov, D., Kaminskas, M.: Music recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 453–492. Springer, New York (2015). doi:10.1007/978-1-4899-7637-6_13
Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007. LNCS, vol. 4635, pp. 558–571. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74255-5_42
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ben Sassi, I., Ben Yahia, S., Mellouli, S. (2017). User-Based Context Modeling for Music Recommender Systems. In: Kryszkiewicz, M., Appice, A., Ślęzak, D., Rybinski, H., Skowron, A., Raś, Z. (eds) Foundations of Intelligent Systems. ISMIS 2017. Lecture Notes in Computer Science(), vol 10352. Springer, Cham. https://doi.org/10.1007/978-3-319-60438-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-60438-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60437-4
Online ISBN: 978-3-319-60438-1
eBook Packages: Computer ScienceComputer Science (R0)