Skip to main content

Analyzing Time-Dependent Infrastructure Optimization Based on Geographic Information System Technologies

  • Conference paper
  • First Online:
Advances in Human Factors, Sustainable Urban Planning and Infrastructure (AHFE 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 600))

Included in the following conference series:

Abstract

There exist different reasons for infrastructure providers to think about upcoming changes and necessary adaptations. This paper covers the experiences made during a three-year research project (called SinOptiKom) during the development of a geographic information system supported tool for analyzing time-dependent infrastructure optimization results. Beside the data preparation and requirements for the successful implementation of such a tool, the resulting design decisions are presented. Examples for the use and combination of common techniques (such as semantic zooming or highlighting) as well as important usability aspects are explained and will greatly support future research in the domain of infrastructure optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baron, S., Kaufmann Alves, I., Schmitt, T.G., Thielen, C.: Optimization of transformation processes of drainage systems in rural areas. In: 13th International Conference on Urban Drainage (2014)

    Google Scholar 

  2. Baron, S., Hoek, J., Kaufmann Alves, I., Herz, S.: Comprehensive scenario management of sustainable spatial planning and urban water services. Water Sci. Technol. 73(5), 1041–1051 (2016)

    Google Scholar 

  3. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of 1996 IEEE Symposium on Visual Languages, pp. 336–343 (1996)

    Google Scholar 

  4. Baron, S., Kaufmann Alves I., Schmitt, T.G., Schöffel, S., Schwank, J.: Cross-sectoral optimization and visualization of transformation processes in urban water infrastructures in rural areas. In: Proceedings IWA World Water Congress 2015. IWA Publishing (2015)

    Google Scholar 

  5. Roberts, J.C.: State of the art: coordinated and multiple views in exploratory visualization. In: Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization, Zurich, pp. 61–71 (2007)

    Google Scholar 

  6. Jern, M., Franzen, J.: “GeoAnalytics’’ - exploring spatio-temporal and multivariate data. In: Conference on Information Visualisation, IV 2006, London, pp. 25–31 (2006)

    Google Scholar 

  7. Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical Methods for Data Analysis, pp. 158–162. Wadsworth, Pacific Grove (1983)

    MATH  Google Scholar 

  8. Saary, M.: Radar plots: a useful way for presenting multivariate health care data. J. Clin. Epidemiol. 61(4), 311–317 (2008)

    Article  Google Scholar 

  9. Perlin, K., Fox, D.: Pad: an alternative approach to the computer interface. In: Proceedings of SIGGRAPH 1993, pp. 57–64. ACM, New York (1993)

    Google Scholar 

  10. NASA World Wind. https://worldwind.arc.nasa.gov/

  11. National Geographic Society: Geographic Information System (GIS). http://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/. Accessed 9 Mar 2017

  12. Thapa, R.B., Murayama, Y.: Land evaluation for peri-urban agriculture using analytical hierarchical process and geographic information system techniques: a case study of Hanoi. Land Use Pol. 25(2), 225–239 (2008)

    Article  Google Scholar 

  13. Weng, Q.: Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 64(3), 273–284 (2002)

    Article  Google Scholar 

  14. McKee, K.T., Shields, T.M., Jenkins, P.R., Zenilman, J.M., Glass, G.E.: Application of a geographic information system to the tracking and control of an outbreak of Shigellosis. Clin. Infect. Dis. 31(3), 728–733 (2000)

    Article  Google Scholar 

  15. Aloquili, O., Elbanna, A., Al-Azizi, A.: Automatic vehicle location tracking system based on GIS environment. IET Softw. 3(4), 255–263 (2009)

    Article  Google Scholar 

  16. Truong, L.T., Somenahalli, S.V.: Using GIS to identify pedestrian-vehicle crash hot spots and unsafe bus stops. J. Public Transp. 14(1), 6 (2011)

    Article  Google Scholar 

  17. Li, L., Zhu, L., Sui, D.Z.: A GIS-based Bayesian approach for analyzing spatial–temporal patterns of intra-city motor vehicle crashes. J. Transp. Geogr. 15(4), 274–285 (2007)

    Article  Google Scholar 

  18. Tran, P., Shaw, R., Chantry, G., Norton, J.: GIS and local knowledge in disaster management: a case study of flood risk mapping in Viet Nam. Disasters 33(1), 152–169 (2009)

    Article  Google Scholar 

  19. Zerger, A., Smith, D.I.: Impediments to using GIS for real-time disaster decision support. Comput. Environ. Urban Syst. 27(2), 123–141 (2003)

    Article  Google Scholar 

  20. Cova, T.J.: GIS in emergency management. Geogr. Inf. Syst. 2, 845–858 (1999)

    Google Scholar 

  21. Broesamle, H., Mannstein, H., Schillings, C., Trieb, F.: Assessment of solar electricity potentials in North Africa based on satellite data and a geographic information system. Sol. Energy 70(1), 1–12 (2001)

    Article  Google Scholar 

  22. Smith, T.M., Lakshmanan, V.: Utilizing Google Earth as a GIS platform for weather applications. In: 22nd International Conference on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology (2006)

    Google Scholar 

  23. Schmitt, T.G., Worreschk, S., Kaufmann Alves, I., Herold, F., Thielen, C.: An optimization and decision support tool for long-term strategies in the transformation of urban water infrastructure. In: Conference on Hydro informatics, NYC, USA (2014)

    Google Scholar 

  24. Google Maps. https://www.google.de/maps/

  25. Google Earth. https://www.google.de/intl/de/earth/

  26. Esri ArcGIS. https://www.arcgis.com/

  27. Caliper Maptitude. http://www.caliper.com/Maptitude/

  28. Hitachi Solutions GIS. http://www.hitachi-solutions.com/gis/

  29. QuantumGIS. http://www.qgis.org/

  30. GRASS – Geographic Resources Analysis Support System. https://grass.osgeo.org/

  31. GeoServer – Open Source Server for sharing geospatial data. http://geoserver.org/

Download references

Acknowledgments

The work in this paper has been funded by the German Federal Ministry of Education and Research (BMBF, project “SinOptiKom”, 033W009A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schöffel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Schöffel, S., Schwank, J. (2018). Analyzing Time-Dependent Infrastructure Optimization Based on Geographic Information System Technologies. In: Charytonowicz, J. (eds) Advances in Human Factors, Sustainable Urban Planning and Infrastructure. AHFE 2017. Advances in Intelligent Systems and Computing, vol 600. Springer, Cham. https://doi.org/10.1007/978-3-319-60450-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60450-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60449-7

  • Online ISBN: 978-3-319-60450-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics