Skip to main content

Predicting Worst-Case Execution Time Trends in Long-Lived Real-Time Systems

  • Conference paper
  • First Online:
Reliable Software Technologies – Ada-Europe 2017 (Ada-Europe 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10300))

Included in the following conference series:

Abstract

In some long-lived real-time systems, it is not uncommon to see that the execution times of some tasks may exhibit trends. For hard and firm real-time systems, it is important to ensure these trends will not jeopardize the system. In this paper, we first introduce the notion of dynamic worst-case execution time (dWCET), which forms a new perspective that could help a system to predict potential timing failures and optimize resource allocations. We then have a comprehensive review of trend prediction methods. In the evaluation, we make a comparative study of dWCET trend prediction. Four prediction methods, combined with three data selection processes, are applied in an evaluation framework. The result shows the importance of applying data preprocessing and suggests that non-parametric estimators perform better than parametric methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akritas, M.G., Murphy, S.A., LaValley, M.P.: The Theil-sen estimator with doubly censored data and applications to astronomy. J. Am. Stat. Assoc. 90(429), 170–177 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24, pp. 180–190. Cambridge Univerisity Press (1928)

    Google Scholar 

  3. Frei, C., Schär, C.: Detection probability of trends in rare events: theory and application to heavy precipitation in the Alpine region. J. Climate 14(7), 1568–1584 (2001)

    Article  Google Scholar 

  4. Hess, A., Iyer, H., Malm, W.: Linear trend analysis: a comparison of methods. Atmos. Environ. 35(30), 5211–5222 (2001)

    Article  Google Scholar 

  5. Hill, T., O’Connor, M., Remus, W.: Neural network models for time series forecasts. Manage. Sci. 42(7), 1082–1092 (1996)

    Article  MATH  Google Scholar 

  6. Kunkel, K.E., Andsager, K., Easterling, D.R.: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate 12(8), 2515–2527 (1999)

    Article  Google Scholar 

  7. Lu, C., Stankovic, J.A., Son, S.H., Tao, G.: Feedback control real-time scheduling: framework, modeling, and algorithms. Real Time Syst. 23(1–2), 85–126 (2002)

    Article  MATH  Google Scholar 

  8. McLeod, A.I., Hipel, K.W., Bodo, B.A.: Trend analysis methodology for water quality time series. Environmetrics 2(2), 169–200 (1991)

    Article  Google Scholar 

  9. Qi, M., Zhang, G.P.: Trend time-series modeling and forecasting with neural networks. IEEE Trans. Neural Netw. 19(5), 808–816 (2008)

    Article  Google Scholar 

  10. Reinsel, G.C., Tiao, G.C.: Impact of chlorofluoromethanes on stratospheric ozone: a statistical analysis of ozone data for trends. J. Am. Statist. Assoc. 82(397), 20–30 (1987)

    Google Scholar 

  11. Sen, P.K.: Estimates of the regression coefficient based on Kendall’s tau. J. Am. Statist. Assoc. 63(324), 1379–1389 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shang, H., Yan, J., Gebremichael, M., Ayalew, S.M.: Trend analysis of extreme precipitation in the Northwestern Highlands of Ethiopia with a case study of Debre Markos. Hydrol. Earth Syst. Sci. 15(6), 1937–1944 (2011)

    Article  Google Scholar 

  13. Smith, R.L.: Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone. Statist. Sci. 4(4), 367–377 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statist. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  15. Stankovic, J.A., Lu, C., Son, S.H., Tao, G.: The case for feedback control real-time scheduling. In: Proceedings of the 11th Euromicro Conference on Real-Time Systems, pp. 11–20. IEEE (1999)

    Google Scholar 

  16. Tiao, G.: Use of statistical methods in the analysis of environmental data. Am. Statist. 37(4b), 459–470 (1983)

    Article  Google Scholar 

  17. Visser, H., Molenaar, J.: Trend estimation and regression analysis in climatological time series: an application of structural time series models and the Kalman filter. J. Climate 8(5), 969–979 (1995)

    Article  Google Scholar 

  18. Wilhelm, R., Engblom, J., Ermedahl, A., et al.: The worst-case execution-time problem overview of methods and survey of tools. ACM Trans. Embedded Comput. Syst. (TECS) 7(3), 36 (2008)

    Google Scholar 

  19. Zhang, G.P., Qi, M.: Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 160(2), 501–514 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, X., Harvey, K.D., Hogg, W., Yuzyk, T.R.: Trends in Canadian streamflow. Water Res. Res. 37(4), 987–998 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Burns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dai, X., Burns, A. (2017). Predicting Worst-Case Execution Time Trends in Long-Lived Real-Time Systems. In: Blieberger, J., Bader, M. (eds) Reliable Software Technologies – Ada-Europe 2017. Ada-Europe 2017. Lecture Notes in Computer Science(), vol 10300. Springer, Cham. https://doi.org/10.1007/978-3-319-60588-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60588-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60587-6

  • Online ISBN: 978-3-319-60588-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics