Skip to main content

Finding the Maximal Day-Time Dependent Component of a Subway System

  • Conference paper
  • First Online:
Advances in Human Factors in Simulation and Modeling (AHFE 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 591))

Included in the following conference series:

  • 2132 Accesses

Abstract

We analyze the properties of a transportation network with time-dependent flows with the aim of finding the maximal component along the duration of a period of the variation of the flow. We apply this analysis method to the subway network of Munich. The analysis is detailed and results are included. Beyond the theoretical interest in this type of network with periodically varying properties, the paper presents a well-structured analysis method that can be widely applied to numerous other networks of applicative interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teodorescu, H.-N.L.: Revisiting models of vulnerabilities of the networks. Stud. Inform. Control 25(4), 469–478 (2016)

    Article  Google Scholar 

  2. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lee, H.F., Dooly, D.R.: Algorithms for the constrained maximum-weight connected graph problem. Nav. Res. Logist. (NRL) 43(7), 985–1008 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. El-Kebir, M., Klau, G.W.: Solving the maximum-weight connected subgraph problem to optimality. arXiv preprint arXiv:1409.5308 (2014)

  6. Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The rooted maximum node-weight connected subgraph problem. In: Gomes, C., Sellmann, M. (eds.) International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 300–315. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Li, Z., Zhang, S., Zhang, X.-S., Chen, L.: Exploring the constrained maximum edge-weight connected graph problem. Acta Math. Applicatae Sin. 25(4), 697–708 (2009). English Series

    Article  MathSciNet  MATH  Google Scholar 

  8. Dittrich, M.T., Klau, G.W., Rosenwald, A., Dandekar, T., Müller, T.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13), i223–i231 (2008)

    Article  Google Scholar 

  9. Guo, Z., Li, Y., Gong, X., Yao, C., Ma, W., Wang, D., Li, Y., Zhu, J., Zhang, M., Yang, D., et al.: Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network. Bioinformatics 23(16), 2121–2128 (2007)

    Article  Google Scholar 

  10. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  11. Conrad, J.M., Gomes, C.P., van Hoeve, W.-J., Sabharwal, A., Suter, J.F.: Wildlife corridors as a connected subgraph problem. J. Environ. Econ. Manag. 63(1), 1–18 (2012)

    Article  MATH  Google Scholar 

  12. Dilkina, B., Gomes, C.P.: Solving connected subgraph problems in wildlife conservation. In: Lodi, A., Milano, M., Toth, P. (eds.) International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, pp. 102–116. Springer, Heidelberg (2010)

    Google Scholar 

  13. Carvajal, R., Constantino, M., Goycoolea, M., Vielma, J.P., Weintraub, A.: Imposing connectivity constraints in forest planning models. Oper. Res. 61(4), 824–836 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, C.-Y., Grauman, K.: Efficient activity detection with max-subgraph search. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1274–1281 (2012)

    Google Scholar 

  15. Nistor, M.S., Bein, D., Bein, W., Dehmer, M., Pickl, S.: Time-based estimation of vulnerable points in the munich subway network. In: Doerner, K., Ljubic, I., Pflug, G., Tragler, G. (eds.) Operations Research Proceedings 2015: Selected Papers of the International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), Vienna, Austria, 1–4 September 2015, pp. 355–360. Springer, Cham (2017)

    Google Scholar 

  16. Nistor, M.S., Pickl, S.W., Raap, M., Zsifkovits, M.: Network efficiency and vulnerability analysis using the flow-weighted efficiency measure. Int. Trans. Oper. Res. (2017). doi:10.1111/itor.12384

    Google Scholar 

  17. Münchner Verkehrsgesellschaft mbH (MVG): MVG in figures (2016). https://www.mvg.de/dam/mvg/ueber/unternehmensprofil/mvg-in-figures-s. Accessed 12 Mar 2017

  18. MVV - Münchner Verkehrs- und Tarifverbund: MVV GmbH (2017). http://www.mvv-muenchen.de/. Accessed 12 Mar 2017

  19. MVV - Münchner Verkehrs- und Tarifverbund: Alle Informationen zu den Bahnhöfen im MVV (2015). http://www.mvv-muenchen.de/de/netz-bahnhoefe/bahnhofsinformation/index.html. Accessed 12 Mar 2017

Download references

Acknowledgments

MSN was supported by the German Federal Ministry of Education and Research (BMBF), project RE(H)STRAIN (Grant No. 13N13786). HNT was supported by a DAAD travel and exchange grant. Doina Bein acknowledges the support by Air Force Office of Scientific Research under award number FA9550-16-1-0257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Sorin Nistor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Nistor, M.S., Bein, D., Teodorescu, H.N., Pickl, S.W. (2018). Finding the Maximal Day-Time Dependent Component of a Subway System. In: Cassenti, D. (eds) Advances in Human Factors in Simulation and Modeling. AHFE 2017. Advances in Intelligent Systems and Computing, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-319-60591-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60591-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60590-6

  • Online ISBN: 978-3-319-60591-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics