Skip to main content

Multistage identification of Wiener-Hammerstein system

  • Conference paper
  • First Online:
Trends in Advanced Intelligent Control, Optimization and Automation (KKA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 577))

Included in the following conference series:

Abstract

In the paper a three-stage, semirecursive scheme for the Wiener-Hammerstein system identification is proposed. The algorithm combines both parametric and nonparametric strategies and allows to recover linear and nonlinear subsystems directly from the noisy inputoutput data. As to the nonlinearity, the main idea is based on the recursive kernel censoring of measurements, while linear dynamics are recovered by a special kind of deconvolution. Efficiency of the obtained estimates is justified by numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. Giri, F., Bai, E.: Block-Oriented Nonlinear System Identification. Lecture Notes in Control and Information Sciences 404, Springer (2010)

    Google Scholar 

  • 2. Greblicki, W., Pawlak, M.: Nonparametric System Identification. Cambridge University Press; 1 edition (2008)

    Google Scholar 

  • 3. Mzyk, G.: Wiener-Hammerstein system identification with non–Gaussian input. In: IFAC International Workshop on Adaptation and Learning in Control and Signal Processing. Antalya, Turkey (2010)

    Google Scholar 

  • 4. Mzyk, G.: Nonparametric recovering of nonlinearity in Wiener–Hammerstein systems. In: Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics, ICINCO. pp. 439–445. IEEE, Rome, Italy (2012)

    Google Scholar 

  • 5. Mzyk, G.: Combined Parametric-Nonparametric Identification of Block-Oriented Systems. Lecture Notes in Control and Information Sciences 454, Springer (2014)

    Google Scholar 

  • 6. Mzyk, G.,Wachel, P.: Kernel–based identification of Wiener–Hammerstein system. Accepted for publication in Automatica (2017)

    Google Scholar 

  • 7. Pawlak, M., Hasiewicz, Z., Wachel, P.: On nonparametric identification of Wiener systems. IEEE Transactions on Signal Processing 55(2), 482–492 (2007)

    Google Scholar 

  • 8. Sjöberg, J., Lauwers, L., Schoukens, J.: Identification of Wiener–Hammerstein models: Two algorithms based on the best split of a linear model applied to the SYSID’09 benchmark problem. Control Engineering Practice 20(11), 1119–1125 (2012)

    Google Scholar 

  • 9. Sjöberg, J., Schoukens, J.: Initializing Wiener–Hammerstein models based on partitioning of the best linear approximation. Automatica 48(2), 353–359 (2012)

    Google Scholar 

  • 10. Śliwiński, P., Hasiewicz, Z.: Computational algorithms for multiscale identification of nonlinearities in Hammerstein systems with random inputs. IEEE Transactions on Signal Processing 53(1), 360–364 (2005)

    Google Scholar 

  • 11. Śliwiński, P., Hasiewicz, Z., Wachel, P.: A simple scheme for semi-recursive identification of Hammerstein system nonlinearity by Haar wavelets. International Journal of Applied Mathematics and Computer Science 23(3), 507–520 (2013)

    Google Scholar 

  • 12. Westwick, D., Schoukens, J.: Initial estimates of the linear subsystems of Wiener–Hammerstein models. Automatica 48(11), 2931–2936 (2012)

    Google Scholar 

  • 13. Wills, A., Schön, T., Ljung, L., Ninnes, B.: Identification of Hammerstein-Wiener models. Automatica 49(1), 70–81 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Wachel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hasiewicz, Z., Wachel, P., Mzyk, G., Kozdraś, B. (2017). Multistage identification of Wiener-Hammerstein system. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds) Trends in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in Intelligent Systems and Computing, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-60699-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60699-6_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60698-9

  • Online ISBN: 978-3-319-60699-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics